已知:如圖14,⊙A與軸交于C、D兩點,圓心A的坐標(biāo)為(1,0),⊙A的半徑為,過點C作⊙A的切線交軸于點B(-4,0).
(1)求切線BC的解析式;
(2)若點P是第一象限內(nèi)⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標(biāo).
解:(1)如圖1所示,連接AC,則AC=
在Rt△AOC中,AC= ,OA="1" ,則OC=2
∴點C的坐標(biāo)為(0,2) ……………………….(1分)
設(shè)切線BC的解析式為,它過點C(0,2),B(?4,0),則有
解之得
∴ ……………………….(2分)
(2)如圖1所示,設(shè)點G的坐標(biāo)為(a,c),過點G作GH⊥軸,
垂足為H點,則OH="a," GH=c=a + 2
連接AP, AG
因為AC="AP" , AG="AG" , 所以Rt△ACG≌Rt△APG (HL)
所以∠AGC=×1200=600 ……………………….(3分)
在Rt△ACG中,∠AGC= 600,AC=
∴Sin600= ∴AG =……………………….(4分)
在Rt△AGH中, AH=OH-OA=a-1 ,GH=a+ 2
+=
∴+=
解之得:= ,= ?(舍去) ……………………….(5分)
點G的坐標(biāo)為(,+ 2 ) ……………………….(6分)
解析
科目:初中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2007年德州市初中畢業(yè)、升學(xué)統(tǒng)一考試數(shù)學(xué)試卷 題型:044
已知:如圖14,在△ABC中,D為AB邊上一點,∠A=36°,AC=BC,AC2=AB·AD.
(1)試說明:△ADC和△BDC都是等腰三角形;
(2)若AB=1,求AC的值;
(3)請你構(gòu)造一個等腰梯形,使得該梯形連同它的兩條對角線得到8個等腰三角形.(標(biāo)明各角的度數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖14,拋物線與軸交于點,點,與直線相交于點,點,直線與軸交于點.
(1)寫出直線的解析式.
(2)求的面積.
(3)若點在線段上以每秒1個單位長度的速度從向運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從向運動.設(shè)運動時間為秒,請寫出的面積與的函數(shù)關(guān)系式,并求出點運動多少時間時,的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com