在直角坐標系xOy中,一次函數(shù)y=kx+b(kb≠0)的圖象過點(1,kb),與x軸、y軸分別交于A、B兩點,設(shè)△ABO的面積為S.
(1)用b表示S.
(2)若b≥2,求S的最小值.
分析:(1)首先將(1,kb)點代入一次函數(shù)解析式,求出k與b的關(guān)系式,再求出一次函數(shù)y=kx+b(kb≠0)的圖象與x軸、y軸分別交于A、B兩點坐標,即可表示出△ABO的面積為S.
(2)根據(jù)b≥2,可以去掉絕對值,利用二次函數(shù)最值求法,可求出S的最小值.
解答:解:(1)∵一次函數(shù)y=kx+b(kb≠0)的圖象過點(1,kb),代入一次函數(shù)解析式得:
∴kb=k+b,
∴kb-k=b,
∴k(b-1)=b,
∴k=
b
b-1
,
∵一次函數(shù)y=kx+b(kb≠0)的圖象與x軸、y軸分別交于A、B兩點,
∴A點坐標為:(-
b
k
,0),B點的坐標為:(0,b),
∵△ABO的面積為S,
∴S=
1
2
|b•
b
k
|=|
b 2
2k
|=|
b 2
2b
b-1
|=|
b 2-b
2
|;

(2)∵S=|
b 2-b
2
|,
若b≥2,∴b2-b>0,
∴S=
b2
2
-
b
2

∴S的最小值為:
22
2
-
2
2
=2-1=1.
點評:此題主要考查了一次函數(shù)與坐標軸的交點坐標求法,以及二次函數(shù)的最值問題等知識,表示圖象與坐標軸圍成的面積,注意應(yīng)該加絕對值保證S是正值,這是做題中經(jīng)常犯錯的地方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

首先,我們看兩個問題的解答:
問題1:已知x>0,求x+
3
x
的最小值.
問題2:已知t>2,求
t2-5t+9
t-2
的最小值.
問題1解答:對于x>0,我們有:x+
3
x
=(
x
-
3
x
)2+2
3
2
3
.當
x
=
3
x
,即x=
3
時,上述不等式取等號,所以x+
3
x
的最小值2
3

問題2解答:令x=t-2,則t=x+2,于是
t2-5t+9
t-2
=
(x+2)2-5(x+2)+9
x
=
x2-x+3
x
=x+
3
x
-1

由問題1的解答知,x+
3
x
的最小值2
3
,所以
t2-5t+9
t-2
的最小值是2
3
-1

弄清上述問題及解答方法之后,解答下述問題:
在直角坐標系xOy中,一次函數(shù)y=kx+b(k>0,b>0)的圖象與x軸、y軸分別交于A、B兩點,且使得△OAB的面積值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標系xOy中,正方形OCBA的頂點A,C分別在y軸,x軸上,點B坐標為(6,6),拋物線y=ax2+bx+c經(jīng)過點A,B兩點,且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點E,F(xiàn)同時分別從點A,點B出發(fā),分別沿A→B,B→C運動,速度都是每秒1個單位長度,當點E到達終點B時,點E,F(xiàn)隨之停止運動,設(shè)運動時間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②當S取得最大值時,在拋物線上是否存在點R,使得以E,B,R,F(xiàn)為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在直角坐標系xoy中,函數(shù)y=4x的圖象與反比例函數(shù)y=
kx
(k>0)的圖象有兩個公共點A、B(如圖),其中點A的縱坐標為4過點A作x軸的垂線,再過點B作y軸的垂線,兩垂線相交于點C.
(1)求點C的坐標;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)已知:如圖,在直角坐標系xOy中,點A(8,0)、B(0,6),點C在x軸的負半軸上,AB=AC.動點M在x軸上從點C向點A移動,動點N在線段AB上從點A向點B移動,點M、N同時出發(fā),且移動的速度都為每秒1個單位,移動時間為t秒(0<t<10).
(1)設(shè)△AMN的面積為y,求y關(guān)于t的函數(shù)關(guān)系解析式;
(2)求四邊形MNBC的面積最小是多少?
(3)求時間t為何值時,△AMN是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山三模)如圖,在直角坐標系xOy中,A、B是x軸上的兩點,以AB為直徑的圓交y軸于C,設(shè)過A、B、C三點的拋物線的解析式為y=x2-mx+n.方程x2-mx+n=0的兩根倒數(shù)和為-4.
(1)求n的值;
(2)求此拋物線的解析式;
(3)設(shè)平行于x軸的直線交此拋物線于E、F兩點,問是否存在此線段EF為直徑的圓恰好與x軸相切?若存在,求出此圓的半徑;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案