①③④
分析:根據(jù)等邊三角形的性質(zhì)求出∠EAC=60°,AE=AC,求出BC=AF,根據(jù)SAS證△ABC≌△EFA,推出FE=AB,∠AEF=∠BAC=30°,求出∠AOE=90°,即可判斷③;求出AD=BD,BF=AF,∠DFB=∠EAF,∠BDF=∠AEF,根據(jù)AAS證△DBF≌△EFA,即可判斷①;得出四邊形ADFE為平行四邊形,推出AG=
AF,AG=
AB,求出AD=AB,推出AD=4AG,即可判斷④;求出∠FAE=90°,∠AFE<90°,推出EF>AE,即可判斷②;根據(jù)平行四邊形性質(zhì)得出AG=GF,推出S
三角形AGOS
三角形GOF,設(shè)AG=1,則AF=2,AB=4,BC=2,由勾股定理求出AC=2
,求出AO=OC,由勾股定理求出OE=3,得出△GOF和△EGO的面積比是1:3,即可判斷⑤.
解答:∵△ACE是等邊三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F為AB的中點,
∴AB=2AF,
∴BC=AF,
在△ABC和△EFA中
,
∴△ABC≌△EFA(SAS),
∴FE=AB,∠AEF=∠BAC=30°,
∠AOE=180°-30°-60°=90°,
∴EF⊥AC,∴③正確,
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
在△DBF和△EFA中
,
∴△DBF≌△EFA(AAS),∴①正確;
∴AE=DF,
∵FE=AB,
∴四邊形ADFE為平行四邊形,
∴AG=
AF,AG=
AB,
∵AD=AB,
則AD=4AG,∴④正確;
∵四邊形ADFE為平行四邊形,
∴AD=EF,
∵∠FAE=90°,∠AFE<90°,
∴EF>AE,
即AD>AE,∴②錯誤;
∵四邊形ADFE為平行四邊形,
∴AG=GF,
∴S
三角形AGO=S
三角形GOF,
設(shè)AG=1,則AF=2,AB=4,BC=2,由勾股定理得:AC=2
,
∠CAE=60°,∠AEF=∠CAB=30°,
∴∠COE=30°+60°=90°=∠AOE,
∵AE=CE,
∴AO=OC,
在等邊三角形ACE中,AE=AC=2
,AO=OC=
,
由勾股定理得:OE=
=3,
∵△GOF的邊OF和△EGO的邊OE上的高相等,
∴△GOF和△EGO的面積比是1:3,
即△AOG與△EOG的面積比為1:3,∴⑤錯誤;
正確的有①③④,
故答案為:①③④.
點評:本題考查了等邊三角形性質(zhì),含30度角的直角三角形性質(zhì),勾股定理,全等三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識點的綜合運用.