(1999•山西)如圖,已知正方形ABCD的邊長為1,M、N分別在AB、AD邊上,若△CMN為正三角形,則此正三角形的邊長為   
【答案】分析:先設DN=x,AM=y,利用勾股定理可分別求出等邊三角形MNC的三邊長,聯(lián)立,解二元二次方程組,可求x、y,從而求出等邊三角形MNC的邊長.
解答:解:設DN=x,AM=y,
在Rt△CDN中,有CD2+DN2=CN2,即1+x2=CN2;
在Rt△AMN中,有AN2+AM2=MN2,即(1-x)2+y2=MN2
在Rt△BCM中,有BM2+BC2=CM2,即(1-y)2+1=CM2;
∵△CMN是等邊三角形,
∴MN=CM=CN,
∴1+x2=(1-x)2+y2=(1-y)2+1,
解得y=-1,x=2-,
∴CN2=1+(2-2=8-4=(-2,
∴CN=-
點評:本題利用了勾股定理、等邊三角形的性質、解二元二次方程組等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:解答題

(1999•山西)如圖,己知Rt△OAB的斜邊OA在x軸正半軸上,直角頂點B在第一象限,OA=5,OB=
(1)求A、B兩點的坐標;
(2)求經過O、A、B三點且對稱軸平行于y軸的拋物線的解析式,并確定拋物線頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•山西)如圖,己知Rt△OAB的斜邊OA在x軸正半軸上,直角頂點B在第一象限,OA=5,OB=
(1)求A、B兩點的坐標;
(2)求經過O、A、B三點且對稱軸平行于y軸的拋物線的解析式,并確定拋物線頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•山西)如圖,己知Rt△OAB的斜邊OA在x軸正半軸上,直角頂點B在第一象限,OA=5,OB=
(1)求A、B兩點的坐標;
(2)求經過O、A、B三點且對稱軸平行于y軸的拋物線的解析式,并確定拋物線頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年山西省中考數(shù)學試卷(解析版) 題型:解答題

(1999•山西)如圖,己知Rt△OAB的斜邊OA在x軸正半軸上,直角頂點B在第一象限,OA=5,OB=
(1)求A、B兩點的坐標;
(2)求經過O、A、B三點且對稱軸平行于y軸的拋物線的解析式,并確定拋物線頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•山西)如圖,AD是△ABC外角∠EAC的平分線AD與三角形的外接圓交于點D,AC、BD相交于點P.
求證:(1)△DBC為等腰三角形;
(2)AB:BD=PB:PC.

查看答案和解析>>

同步練習冊答案