拋物線y=-x2+2(m+1)x+m+3與x軸交于A、B兩點(如圖),且OA:OB=3:1,則m等于( )

A.-
B.0
C.-或0
D.1
【答案】分析:運用二次函數(shù)與x軸有交點的性質(zhì).
解答:解:設(shè)B坐標為(a,0),那么A(-3a,0),與x軸有交點,此時y=0.
那么拋物線變?yōu)?x2+2(m+1)x+m+3=0.
∴a+(-3a)=2m+2,a(-3a)=-m-3,
解得a=-1,m=0;a=,m=-
∵對稱軸在y軸右側(cè),所以->0,解得m>-1,
∴m=0.
故選B.
點評:二次函數(shù)與x軸有交點,那么就可變?yōu)橐辉畏匠糖蠼,注意利用拋物線的對稱軸舍去不合題意的值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經(jīng)過B、C兩點,點精英家教網(wǎng)A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達式;
(2)若點P在線段BC上,且S△PAC=
12
S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標,且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知一元二次方程-x2+bx+c=0的兩個實數(shù)根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代數(shù)式表示);
(2)設(shè)拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標;
(3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數(shù)根,則c的值可以是
2
.(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是( 。

查看答案和解析>>

同步練習冊答案