由示意圖可見,拋物線y=x2 +px+q   ①若有兩點A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個交點C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當(dāng)A(1,- 2.005),且xl、x2均為整數(shù)時,求二次函數(shù)的表達(dá)式,

y=x2+2002x-4008;y=x2+2006x;y=x2+394x-2004;y=x2+398x-1608.

解析試題分析:∵x1+x2=-p,x1•x2=q, ∴A點(1,-2005)代入方程,p和q用x1和x2代換整理得,
-2005=(1-x1)(1-x2).
由xl、x2為整數(shù),且2 005=5×401得
;;
分別解得:x1=-2004,x2=2,則y=x2+2002x-4008;x1=0,x2=2006,則y=x2+2006x;
x1=-400,x2=6,則y=x2+394x-2004;x1=-4,x2=402,則y=x2+398x-1608.
經(jīng)檢驗,所求的拋物線有以下4條:
y=x2+2002x-4008;y=x2+2006x;y=x2+394x-2004;y=x2+398x-1608.
考點:二次函數(shù)
點評:本題難度中等,主要考查學(xué)生對二次函數(shù)知識點的掌握與綜合運(yùn)用能力。把A點坐標(biāo)代入兩點式為解題關(guān)鍵。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川眉山11分)如圖,在平面直角坐標(biāo)系中,點A、B在x軸上,點C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點,直線AD與拋物線交于另一點M.

(1)求這條拋物線的解析式;
(2)P為拋物線上一動點,E為直線AD上一動點,是否存在點P,使以點A、P、E為頂點的三角形為等腰直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由.
(3)請直接寫出將該拋物線沿射線AD方向平移個單位后得到的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點,過A、B兩點的拋物線為y=﹣x2+bx+c.點D為線段AB上一動點,過點D作CD⊥x軸于點C,交拋物線于點E.

(1)求拋物線的解析式.
(2)當(dāng)DE=4時,求四邊形CAEB的面積.
(3)連接BE,是否存在點D,使得△DBE和△DAC相似?若存在,求此點D坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校為培育青少年科技創(chuàng)新能力,舉辦了動漫制作活動,小明設(shè)計了點做圓周運(yùn)動的一個雛形,如圖所示,甲、乙兩點分別從直徑的兩端點A、B以順時針、逆時針的方向同時沿圓周運(yùn)動,甲運(yùn)動的路程l(cm)與時間t(s)滿足關(guān)系:(t≥0),乙以4cm/s的速度勻速運(yùn)動,半圓的長度為21cm.

(1)甲運(yùn)動4s后的路程是多少?
(2)甲、乙從開始運(yùn)動到第一次相遇時,它們運(yùn)動了多少時間?
(3)甲、乙從開始運(yùn)動到第二次相遇時,它們運(yùn)動了多少時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,3)它的對稱軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點,當(dāng)△MBC為等腰三角形時,求M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=900,且EF交正方形外角的平分線CF于點F.

(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線上,求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,過點A(0,4)的圓的圓心坐標(biāo)為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線經(jīng)過C、B兩點,與x軸的另一交點為D。

(1)點B的坐標(biāo)為(       ,       ),拋物線的表達(dá)式為       .
(2)如圖2,求證:BD//AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上的一個定點,點P是雙曲線y=(x>0)上的一個動點,PB⊥y軸于點B,當(dāng)點P的橫坐標(biāo)逐漸增大時,四邊形OAPB的面積將會( 。

A.逐漸增大 B.不變 C.逐漸減小 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若函數(shù)y=的圖象在其象限內(nèi)y的值隨x值的增大而增大,則m的取值范圍是(  )

A.m>-2 B.m<-2 C.m>2 D.m<2

查看答案和解析>>

同步練習(xí)冊答案