【題目】如圖,是將拋物線y=-x2 平移后得到的拋物線,其對(duì)稱軸為x=1,與x軸的一個(gè)交點(diǎn)為A(-1,0) ,另一交點(diǎn)為B,與y軸交點(diǎn)為C.

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn)N 為拋物線上一點(diǎn),且BCNC,求點(diǎn)N的坐標(biāo);

3)點(diǎn)P是拋物線上一點(diǎn),點(diǎn)Q是一次函數(shù)y=x+的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P、Q的坐標(biāo),若不存在,說(shuō)明理由.

【答案】1y=-x2+2x+3;(2)(1,4; 3PQ的坐標(biāo)是(0,3)(1,3) ,

【解析】試題分析

1)由題意可設(shè)該拋物線的解析式為,代入點(diǎn)(-1,0)求出k的值即可得到所求解析式;

(2)由(1)中所得拋物線的解析式可求得點(diǎn)B、C的坐標(biāo),從而可求出直線BC的解析式,由直線NC⊥BC且過(guò)點(diǎn)C可求得NC的解析式,把NC的解析式和拋物線的解析式聯(lián)立得到方程組,解方程組即可求得點(diǎn)N的坐標(biāo);

3如下圖,由題意易得PQ=OA=1,且PQOA,設(shè)點(diǎn)P的橫坐標(biāo)為t,則可用含“t”的式子表達(dá)出Q的坐標(biāo),再把Q的坐標(biāo)代入函數(shù)y=x+ 中,即可解得“t”的值,從而可求得P、Q的坐標(biāo).

試題解析

1)設(shè)拋物線的解析式是y=-x-12+4.把 (-1,0)代入得 0=-1-12+k

解得,k=4

則拋物線的解析式是 y=-x-12+4

y=-x2+2x+3;

2設(shè)直線BC的解析式為y=kx+bk≠0),代入點(diǎn)B、C的坐標(biāo)得

解得:

直線BC的解析式為y=-x+3,

BC⊥NC,

可設(shè)直線CN的解析式為y=x+m.

∵C03在直線CN,

∴0+m=3,解得m=3,即直線CN的解析式為 y=x+3,

由: ,即 x+3=-x2+2x+3=-x2+2x+3,解得:x1=0,x2=1,

∴N的坐標(biāo)是(1,4,

3四邊形OAPQ是平行四邊形,則PQ=OA=1,且PQ∥OA,

設(shè)P(t,-t2+2t+3),則Q(t+1, -t2+2t+3) ,將PQ的坐標(biāo)代入,

-t2+2t+3=,

整理,得2t2-t=0, ,

解得t=0

-t2+2t+3 的值為3

P、Q的坐標(biāo)是(0,3)(1,3) ,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在離水面高度5米的岸上有人用繩子拉船靠岸,開(kāi)始時(shí)繩子BC的長(zhǎng)度為13米,此人以每秒0.5米的速度收繩.問(wèn):

1)未開(kāi)始收繩的時(shí)候,圖中船B距岸A的長(zhǎng)度AB是多少米?

2)收繩10秒后船向岸邊移動(dòng)了多少米?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是以AB為直徑的⊙O上一動(dòng)點(diǎn)過(guò)點(diǎn)CO直徑CD,過(guò)點(diǎn)BBECD于點(diǎn)E.已知AB=6cm設(shè)弦AC的長(zhǎng)為xcm,B,E兩點(diǎn)間的距離為ycm(當(dāng)點(diǎn)C與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0).

小冬根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究

下面是小冬的探究過(guò)程,請(qǐng)補(bǔ)充完整

1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了xy的幾組值,如下表

經(jīng)測(cè)量m的值是(保留一位小數(shù))

2)建立平面直角坐標(biāo)系,描出表格中所有各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn)畫出該函數(shù)的圖象;

3在(2)的條件下,當(dāng)函數(shù)圖象與直線相交時(shí)(原點(diǎn)除外)BAC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:ABAE;

(2)若BC2=ADAB,求證:四邊形ADCE為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:將一個(gè)邊長(zhǎng)為nn≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn), 則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少呢?

問(wèn)題探究:要研究上面的問(wèn)題,我們不妨先從特例入手,進(jìn)而找到一般規(guī)律

探究一:將一個(gè)邊長(zhǎng)為2的正三角形的三條邊平分,連接各邊中點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

如圖1,連接邊長(zhǎng)為2的正三角形三條邊的中點(diǎn),從上往下:共有1+2+3=6個(gè)結(jié)點(diǎn).邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有2個(gè),共有1+2=3個(gè),線段數(shù)為3×3=9條;邊長(zhǎng)為2的正三角形有1個(gè),線段數(shù)為3條,總共有1+2+1=2×1+2+3=12條線段.

探究二:將一個(gè)邊長(zhǎng)為3的正三角形的三條邊三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

如圖2,連接邊長(zhǎng)為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下:共有1+2+3+4=10個(gè)結(jié)點(diǎn).邊長(zhǎng)為1的正三角形,第一層有1個(gè),第二層有2個(gè),第三層有3個(gè),共有1+2+3=6個(gè),線段數(shù)為3×6=18條;邊長(zhǎng)為2的正三角形有1+2=3個(gè),線段數(shù)為3×3=9條,邊長(zhǎng)為3的正三角形有1個(gè),線段數(shù)為3條,總共有1+2+3+1+2+1=3×1+2+3+4=30條線段.

探究三:

請(qǐng)你仿照上面的方法,探究將邊長(zhǎng)為4的正三角形的三條邊四等分(圖3),連接各邊對(duì)應(yīng)的等分點(diǎn),該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

(畫出示意圖,并寫出探究過(guò)程)

問(wèn)題解決:

請(qǐng)你仿照上面的方法,探究將一個(gè)邊長(zhǎng)為nn≥2)的正三角形的三條邊n等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?(寫出探究過(guò)程)

實(shí)際應(yīng)用:

將一個(gè)邊長(zhǎng)為30的正三角形的三條邊三十等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形被剖分的網(wǎng)格中的結(jié)點(diǎn)個(gè)數(shù)和線段數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAP+APD=180°,∠1=2,求證:∠E=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y=x2+(2m﹣1)x﹣2m.

(1)若m=1,拋物線Cx軸于A,B兩點(diǎn),求AB的長(zhǎng);

(2)若一次函數(shù)y=kx+mk的圖象與拋物線C有唯一公共點(diǎn),求m的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市為方便行人過(guò)馬路,打算修建一座高為4x(m)的過(guò)街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請(qǐng)求出天橋總長(zhǎng)和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過(guò)馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時(shí)從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時(shí)多用了12.8s,請(qǐng)求出馬路寬度AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案