如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為________.

6
分析:根據(jù)相交弦定理“圓內兩弦相交于圓內一點,各弦被這點所分得的兩線段的長的乘積相等”進行計算.
解答:解:延長AO交⊙O于B,
∵⊙O的半徑為5,AP=2,
∴AB=10,
∴PB=AB-AP=8,
由相交弦定理得PA•PB=PM•PN,
∵MP:PN=1:2,
∴PN=2PM,
∴PA•PB=PM•PN=2PM2=16,
∴PM2=8,
∴PN=2,
∴PM=4,
∴MN=PM+PN=6
故答案為:6
點評:本題主要考查相交弦定理:圓內兩弦相交于圓內一點,各弦被這點所分得的兩線段的長的乘積相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側,AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習冊答案