【題目】如圖,E是正方形ABCD的邊AB上的動點,但始終保持EF⊥DE交BC于點F.
(1)求證:△ADE∽△BEF;
(2)若正方形的邊長為4,設AE=x,BF=y,求y與x之間的函數(shù)解析式;
(3)當x取何值時,y有最大值?并求出這個最大值.
【答案】(1)證明見解析;(2) ;(3)當時, 取得最大值, .
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)及余角的性質(zhì)得出△ADE與△BEF的兩對應角相等,從而得出△ADE∽△BEF;
(2)根據(jù)相似三角形的性質(zhì)得出y關于x的函數(shù)解析式及函數(shù)的定義域;
(3)利用配方法,即可解決問題;
試題解析:
(1)∵ 四邊形ABCD是正方形,
∴ ∠A=∠B=90°,∴ ∠1+∠2=90°,
又∵,∴ ∠2+∠3=90°,∴ ∠1=∠3 ,
∴ ∽;
(2)依題意知:AB=AD=4,
∵,∴ BE= ,
由(1)知∽, ∴ ,
即 ,
∴ ,
即 ;
(3)∵ ,
∴ 當時, 取得最大值, .
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):
如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關系?并證明你的結(jié)論.
(2)類比探究:
如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知平行四邊形ABCD頂點A的坐標為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.
(1)求拋物線的表達式;
(2)設四邊形ABEF的面積為S,請求出S與m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)如圖2,過點F作FM⊥x軸,垂足為M,交直線AC于P,過點P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點F,交BC的延長線于點E,連接AE,DF.
求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的邊BC在x軸上,頂點A在y軸的正半軸上,OA=2,OB=1,OC=4.
(1)求過A、B、C三點的拋物線的解析式;
(2)設點M是x軸上的動點,試問:在平面直角坐標系中,是否存在點N,使得以點A,B,M,N為頂點的四邊形是菱形?若存在,直接寫出點N的坐標;若不存在,說明理由;
(3)若拋物線對稱軸交x軸于點P,在平面直角坐標系中,是否存在點Q,使△PAQ是以PA為腰的等腰直角三角形?若存在,寫出所有符合條件的點Q的坐標,選擇一種情況加以說明;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角中,是邊上的高. ,且.連接,交的延長線于點,連接.下列結(jié)論:①;②;③;④.其中一定正確的個數(shù)是( )
A.個B.個
C.個D.個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com