已知:在Rt△ABC,∠C=90°,D是BC邊的中點(diǎn),DE⊥AB于E,tanB=,AE=7,求DE。
∵DE⊥AB于E,∴tanB==,設(shè)DE=x∴BE=2x
∴BD== ∴cosB==
∵∠C=90°,∴cosB===
∵D是BC邊的中點(diǎn),∴BC=2BD=2∴AB=
∵AE=7,∴AB=AE+BE  5 x=7+2x  x=
首先表示出BD的長,進(jìn)而得出AB=5x,由AB=AE+BE,得出5x=7+2x,求出x即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某海濱浴場東西走向的海岸線可以近似看作直線l(如圖).救生員甲在A處的瞭望臺上觀察海面情況,發(fā)現(xiàn)其正北方向的B處有人發(fā)出求救信號,他立即沿AB方向徑直前往救援,同時通知正在海岸線上巡邏的救生員乙.乙馬上從C處入海,徑直向B處游去.甲在乙入海10秒后趕到海岸線上的D處,再向B處游去.若CD=40米,B在C的北偏東35°方向,甲乙的游泳速度都是2米/秒.問誰先到達(dá)B處?請說明理由.
(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)ctan30°=     ;
(2)如圖,已知tanA=,其中∠A為銳角,試求ctanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某人在山坡坡腳A處測得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡度且O,A,B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測傾器高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線y=x+3交x軸于A點(diǎn),將一塊等腰直角三角形紙板的直角頂點(diǎn)置于原點(diǎn)O,另兩個頂點(diǎn)M、N恰落在直線y=x+3上,若N點(diǎn)在第二象限內(nèi),則tan∠AON的值為(  )                                                                   
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,∠C=90°,cosA=  則tanB的值為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,甲樓AB的高度為123m,自甲樓樓頂A處,測得乙樓頂端C處的仰角為450,測得乙樓底部D處的俯角為300,求乙樓CD的高度(結(jié)果精確到0.1m,取1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線兩條平行線間的距離都相等,如果直角梯形的三個頂點(diǎn)在平行直線上, ,且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形中,過對角線交點(diǎn)的長是( ▲ )
A.2.5B.3C.3.4D.不能確定

查看答案和解析>>

同步練習(xí)冊答案