已知:如圖,AC⊙O是的直徑,BC是⊙O的弦,點P是⊙O外一點,∠PBA=∠C.

(1)求證:PB是⊙O的切線;

(2)若OP∥BC,且OP=8,BC=2.求⊙O的半徑.

考點:

切線的判定;全等三角形的判定與性質(zhì)

分析:

(1)連接OB,求出∠ABC=90°,∠PBA=∠OBC=∠OCB,推出∠PBO=90°,根據(jù)切線的判定推出即可;

(2)證△PBO和△ABC相似,得出比例式,代入求出即可.

解答:

(1)證明:連接OB,

∵AC是⊙O直徑,

∴∠ABC=90°,

∵OC=OB,

∴∠OBC=∠ACB,

∵∠PBA=∠ACB,

∴∠PBA=∠OBC,

即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°,

∴OB⊥PB,

∵OB為半徑,

∴PB是⊙O的切線;

(2)解:設(shè)⊙O的半徑為r,則AC=2r,OB=R,

∵OP∥BC,∠OBC=∠OCB,

∴∠POB=∠OBC=∠OCB,

∵∠PBO=∠ABC=90°,

∴△PBO∽△ABC,

=

=,

r=2,

即⊙O的半徑為2

點評:

本題考查了等腰三角形性質(zhì),平行線性質(zhì),相似三角形的性質(zhì)和判定,切線的判定等知識點的應(yīng)用,主要考查學(xué)生的推理能力,用了方程思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

29、已知:如圖,AC=BD,DF=CE,∠ECB=∠FDA.求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,AC=DF,AC∥FD,AE=DB,則根據(jù)
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AC是⊙O的直徑,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切線,E精英家教網(wǎng)是切點,
求證:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)設(shè)BE=2,∠ODE=a,則cos2a=
1OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,AC、BD交于O點,OA=OC,OB=OD、則不正確的結(jié)果是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AC平分∠BAD,CE⊥AB于E點,CF⊥AD于F點,在AB上有一點M,且CM=CD.
(1)請你用尺規(guī)作出點M的位置,
(2)若AF=12,DF=4,求AM的長,
(3)試說明∠CDA與∠CMA的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案