精英家教網 > 初中數學 > 題目詳情

【題目】(10分)如圖,一次函數與反比例函數的圖象交于A(1,4),B(4,n)兩點.

(1)求反比例函數的解析式;

(2)求一次函數的解析式;

(3)點P是x軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

【答案】(1);(2);(3)P(,0).

【解析】

試題分析:(1)把A的坐標代入即可求出結果;

(2)先把B的坐標代入得到B(4,1),把AB的坐標,代入即可求得一次函數的解析式;

(3)作點B關于x軸的對稱點B′,連接AB′交x軸于P,則AB′的長度就是PA+PB的最小值,求出直線AB′與x軸的交點即為P點的坐標.

試題解析:(1)把A(1,4)代入得:m=4,反比例函數的解析式為:;

(2)把B(4,n)代入得:n=1,B(4,1),把A(1,4),B(4,1)代入,,一次函數的解析式為:;

(3)作點B關于x軸的對稱點B′,連接AB′交x軸于P,則AB′的長度就是PA+PB的最小值,由作圖知,B′(4,﹣1),直線AB′的解析式為:,當y=0時,x=P(,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列說法正確的是( )

A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數相同,方差分別是,,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點MCD的邊上,且DM=2,ΔAEMΔADM關于AM所在的直線對稱,將ΔADM按順時針方向繞點A旋轉90°得到ΔABF,連接EF,已知線段EF的長為,則正方形ABCD的邊長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(59),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與AB組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某數學活動小組在作三角形的拓展圖形,研究其性質時,經歷了如下過程:

操作發(fā)現:

在等腰△ABC中,AB=AC,分別以ABAC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,MBC的中點,連接MDME,則下列結論正確的是 (填序號即可)

①AF=AG=AB;②MD=ME整個圖形是軸對稱圖形;④∠DAB=∠DMB

數學思考:

在任意△ABC中,分別以ABAC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,MBC的中點,連接MDME,則MDME具有怎樣的數量和位置關系?請給出證明過程;

類比探索:

在任意△ABC中,仍分別以ABAC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,MBC的中點,連接MDME,試判斷△MED的形狀.

答:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊△ABC內有一點D,AD=5BD=6,CD=4,將△ABDA點逆時針旋轉,使ABAC重合,點D旋轉至點E,求∠CDE的正切值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(7分)如圖,ABC中,ACB=90°,D.E分別是BC、BA的中點,聯結DE,F在DE延長線上,且AF=AE.

(1)求證:四邊形ACEF是平行四邊形;

(2)若四邊形ACEF是菱形,求B的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在趣味運動會定點投籃項目中,我校七年級八個班的投籃成績單位:個分別為:2420,1920,22,2320,則這組數據中的眾數和中位數分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

同步練習冊答案