如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=   
【答案】分析:連接AC,由直徑與弦垂直,得到三角形BCE為直角三角形,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得到EF等于BC的一半,再根據(jù)中位線定理得到OF等于AC的一半,然后由AB為直徑,根據(jù)直徑所對的圓周角為直角得到角ACB為直角即三角形ABC為直角三角形,根據(jù)勾股定理得到AC與BC的平方和等于直徑AB的平方,然后把所求的式子等量代換即可求出值.
解答:解:連接AC,
∵直徑AB⊥弦CD,
∴△BCE為直角三角形,
由F為BC的中點,得到EF為斜邊BC的中線,
∴EF=FB=BC,
又∵點F為BC中點,
∴OF⊥BC,
∴∠OFB=90°,
在Rt△OFB中,
根據(jù)勾股定理得:FB2+OF2=OB2=9,
則EF2+OF2=9.
故答案為:9
點評:此題綜合考查了中位線定理,直角三角形及圓的有關性質.在圓中已知直徑一般作輔助線形成直徑所對的圓周角,構建直角三角形,借助直角三角形的有關知識解決數(shù)學問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側,AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習冊答案