【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,2),連接AB,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP、BP,當(dāng)△ABP的周長(zhǎng)最小時(shí),對(duì)應(yīng)的點(diǎn)P的坐標(biāo)和△ABP的最小周長(zhǎng)分別為( )
A. (1,0), B. (3,0), C. (2,0), D. (2,0),
【答案】D
【解析】作A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)N(1,-2),連接BN與x軸的交點(diǎn)即為點(diǎn)P的位置,此時(shí)△ABP的周長(zhǎng)最小.
設(shè)直線BN的解析式為,
∵N(1,-2),B(3,2),
∴ ,
解得,
∴,
當(dāng)時(shí), ,
解得, ,
∴點(diǎn)P的坐標(biāo)為(2,0);
∵A(1,2),B(3,2),
∴AB//x軸,
∵AN⊥x軸,
∴AB⊥x軸,
在Rt△ABC中,AB=2,AN=4,
由勾股定理得,
BN=,
∵AP=NP,
∴△ABP的周長(zhǎng)最小值為:AB+BP+AP=AB+BP+PN=AB+BN=2+2.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用電,某市對(duì)居民用電實(shí)行“階梯收費(fèi)”(總電費(fèi)=第一階梯電費(fèi)+第二階梯電費(fèi)).規(guī)定:用電量不超過(guò)200度按第一階梯電價(jià)收費(fèi),超過(guò)200度的部分按第二階梯電價(jià)收費(fèi).如圖是張磊家2018年1月和3月所交電費(fèi)的收據(jù),則該市規(guī)定的第一階梯電價(jià)和第二階梯電價(jià)分別為每度( 。
A. 0.5元、0.6元 B. 0.4元、0.5元 C. 0.3元、0.4元 D. 0.6元、0.7元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)舉辦的“2016年春節(jié)聯(lián)歡晚會(huì)”受到廣泛關(guān)注,某民間組織就2016年春節(jié)聯(lián)歡晚會(huì)節(jié)目的喜愛(ài)程度,在麗州廣場(chǎng)進(jìn)行了問(wèn)卷調(diào)查,并將問(wèn)卷調(diào)查結(jié)果分為“非常喜歡”“比較喜歡”“感覺(jué)一般”“不太喜歡”四個(gè)等級(jí),分別記作A,B,C,D,根據(jù)調(diào)查結(jié)果繪制出如圖所示的“扇形統(tǒng)計(jì)圖”和“條形統(tǒng)計(jì)圖”,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)這次被調(diào)查對(duì)象共有人,被調(diào)查者“不太喜歡”有人;
(2)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(3)在“非常喜歡”調(diào)查結(jié)果里有5人為80后,分別為3男2女,在這5人中,該民間組織打算隨機(jī)抽取2人進(jìn)行采訪,請(qǐng)你用列表法或列舉法求出所選2人均為男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD與正三角形AEF的頂點(diǎn)A重合,將△AEF繞其頂點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)BE=DF時(shí),∠BAE的大小可以是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿線段AB向點(diǎn)B運(yùn)動(dòng),連接DP,把∠A沿DP折疊,使點(diǎn)A落在點(diǎn)A′處.求出當(dāng)△BPA′為直角三角形時(shí),點(diǎn)P運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:
尺規(guī)作圖:作對(duì)角線等于已知線段的菱形.
已知:兩條線段、.
求作:菱形,使得其對(duì)角線分別等于和.
小軍的作法如下:
如圖
()畫(huà)一條線段等于.
()分別以、為圓心,大于的長(zhǎng)為半徑,在線段的上下各作兩條弧,兩弧相交于、兩點(diǎn).
()作直線交于點(diǎn).
()以點(diǎn)為圓心,線段的長(zhǎng)為半徑作兩條弧,交直線于、兩點(diǎn),連接、、、.
所以四邊形就是所求的菱形.
老師說(shuō):“小軍的作法正確”.
該作圖的依據(jù)是__________和___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF= ,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點(diǎn),過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H.
(1)判斷DH與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:H為CE的中點(diǎn);
(3)若BC=10,cosC= ,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC和∠BOC互補(bǔ),則弦BC的長(zhǎng)度為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com