如圖,拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點c(0,3).
(1)求此拋物線所對應函數(shù)的表達式;
(2)若拋物線的頂點為D,在其對稱軸右側(cè)的拋物線上是否存在點P,使得△PCD為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
(1)拋物線與x軸交于點(-1,0)和(3,0),
設表達式為y=a(x+1)(x-3),
又點(0,3)在拋物線上,則3=a×1×(-3),
∴a=-l
故所求的表達式為:y=-(x+1)(x-3),即y=-x2+2x+3.

(2)存在.
由y=-x2+2x+3=-(x-1)2+4知,D點坐標為(1,4),對稱軸為x=1,
①若以CD為底邊,則PC=PD.設P點坐標為(a,b),
由勾股定理,得:a2+(3-b)2=(a-1)2+(4-b)2,
即b=4-a.
又點P(a,b)在拋物線上,b=-a2+2a+3,
則4-a=-a2+2a+3.整理,得a2-3a+1=0,
解,得a1=
3+
5
2
>1,a2=
3-
5
2
<1
(不合題意,舍去)
a=
3+
5
2
,
b=4-
3+
5
2
=
5-
5
2
,
P(
3+
5
2
,
5-
5
2
);
②若以CD為一腰,因點P在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點P與點C關于直線x=1對稱,
此時點P坐標為(2,3),
綜上所述,符合條件的點P坐標為(
3+
5
2
,
5-
5
2
)或(2,3).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸交于點A、B兩點,與y軸交于點C,其中A(1,0),C(0,-3).
(1)求拋物線的解析式;
(2)求出該拋物線的對稱軸及頂點D的坐標;
(3)若點P在拋物線上運動(點P異于點D),當△PAB的面積和△DAB面積相等時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

矩形ABCD的邊長AB=3,AD=2,將此矩形放在平面直角坐標系中,使AB在x軸的正半軸上,點A在點B的左側(cè),另兩個頂點都在第一象限,且直線y=
3
2
x-1
經(jīng)過這兩個頂點中的一個.
(1)求A、B、C、D四點坐標;
(2)以AB為直徑作⊙M,記過A、B兩點的拋物線y=ax2+bx+c的頂點為P.
①若P點在⊙M和矩形內(nèi),求a的取值范圍;
②過點C作CF切⊙M于E,交AD于F,當PFAB時,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則這個二次函數(shù)的表達式是y=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點A(0,-3),且頂點P的坐標為(1,-4),
(1)求這個函數(shù)的關系式;
(2)在平面直角坐標系中,畫出它的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為4,點P是AB上不與A、B重合的任意一點,作PQ⊥DP,Q在BC上,設AP=x,BQ=y,
(1)求y與x之間的函數(shù)關系式,并指出自變量x的取值范圍;
(2)求函數(shù)圖象的頂點坐標,并作出大致圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象的頂點位于x軸下方,它到x軸的距離為4,下表是x與y的對應值表:
x______0______2______
y0-3-4-30
(1)求出二次函數(shù)的解析式;
(2)將表中的空白處填寫完整;
(3)在右邊的坐標系中畫出y=ax2+bx+c的圖象;
(4)根據(jù)圖象回答:當x為何值時,函數(shù)y=ax2+bx+c的值大于0.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線y=-
1
2
x2+bx+c經(jīng)過矩形ABCO的頂點B、C,D為BC的中點,直線AD與y軸交于E點,與拋物線y=-
1
2
x2+bx+c交于第四象限的F點.
(1)求該拋物線解析式與F點坐標;
(2)如圖(2),動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;同時,動點M從點A出發(fā),沿線段AE以每秒
13
2
個單位長度的速度向終點E運動.過點P作PH⊥OA,垂足為H,連接MP,MH.設點P的運動時間為t秒.
①問EP+PH+HF是否有最小值?如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時的銷售單價不低于成本價,又不高于每件70元,試銷中銷售量y(件)與銷售單價x(元)的關系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關系式;
(2)設公司獲得的總利潤(總利潤=總銷售額-總成本)為P元,求P與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當x取何值時,P的值最大,最大值是多少?

查看答案和解析>>

同步練習冊答案