【題目】如圖,拋物線y軸交于點,對稱軸為直線,點D為拋物線的頂點.

求拋物線解析式和頂點D的坐標;

求拋物線與x軸的兩交點A、B的坐標;

你可以直接寫出不等式的解集嗎?

【答案】(1)頂點D的坐標為;(2)、B的坐標分別為、;(3)

【解析】試題分析:

(1)把點C(0,-3)代入解析式可得c=-3,由對稱軸為直線x=可解得b=-2,由此即可得到拋物線的解析式;再把所得解析式配方化為“頂點式”,即可得到頂點坐標;

(2)由二次函數(shù)解析式中y=0,解得對應(yīng)的x的值,即可求得A、B兩點的坐標;

(3)由(2)中所求A、B的坐標結(jié)合拋物線開口向上即可得到不等式的解集.

試題解析

(1)∵拋物線y軸交于點,對稱軸為直線,

,解得:b=-2,c=3,

拋物線的解析式為:y=x2-2x-3,

∵y=x2-2x+3=(x-1)2-4,

拋物線的頂點坐標為(1,-4);

(2)在y=x2-2x-3,y=0時,x2-2x-3=0,解得:x1=3,x2=-1,

∴A的坐標為(-1,0),B的坐標為(3,0);

(3)∵A的坐標為(-1,0),B的坐標為(3,0),拋物線y=x2-2x-3開口向上,

的解集為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時后乙開汽車前往.設(shè)甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km).如圖①是y1y2關(guān)于x的函數(shù)圖象

(1)分別求線段OA與線段BC所表示的y1y2關(guān)于x的函數(shù)表達式;

(2)當x為多少時,兩人相距6km?

(3)設(shè)兩人相距S千米,在圖②所給的直角坐標系中畫出S關(guān)于x的函數(shù)圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形中,,.延長到點,使,連接,動點從點出發(fā),以每秒2個單位的速度沿向終點運動,設(shè)點的運動時間為秒,當的值為___________時,全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拱橋所在弧所對的圓心角為120°(∠AOB=120°),半徑為5 m,一艘6 m寬的船裝載一集裝箱,已知箱頂寬3.2 m,離水面AB2 m,問此船能過橋洞嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由一些大小相同的小正方體組成的簡單幾何體的主視圖和俯視圖如圖29-29所示.

(1)請你畫出這個幾何體的一種左視圖.

(2)若組成這個幾何體的小正方體的塊數(shù)為n,請你寫出n的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸交于兩點AAx軸的正半軸上,點Bx軸的負半軸上y軸交于點C

m的取值范圍;

如果1,在該拋物線對稱軸右邊圖象上求一點P的坐標,使得

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料后解決問題:

小明遇到下面一個問題:

計算(2+1)(22+1)(24+1)(28+1).

經(jīng)過觀察,小明發(fā)現(xiàn)如果將原式進行適當?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結(jié)構(gòu),進而可以應(yīng)用平方差公式解決問題,具體解法如下:(2+1)(22+1)(24+1)(28+1)

=(2+1)(2﹣1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

請你根據(jù)小明解決問題的方法,試著解決以下的問題:

(1)(2+1)(22+1)(24+1)(28+1)(216+1)=_____

(2)(3+1)(32+1)(34+1)(38+1)(316+1)=_____

(3)化簡:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:平面內(nèi)的直線l1l2相交于點O,對于該平面內(nèi)任意一點M,點M到直線l1、l2的距離分別為a、b,則稱有序非負實數(shù)對(a,b)是點M的“距離坐標”,根據(jù)上述定義,距離坐標為(21)的點的個數(shù)有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲分為三等分數(shù)字轉(zhuǎn)盤,乙為四等分數(shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.

(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是   ;

(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案