直角坐標(biāo)系中,以點(diǎn)A(1,0)為圓心作半徑為8的圓,則點(diǎn)B(-5,7)與⊙A的位置關(guān)系為( 。
A、點(diǎn)B在⊙A上,B、點(diǎn)B在⊙A外C、點(diǎn)B在⊙A內(nèi)D、不能確定
分析:根據(jù)兩點(diǎn)間距離公式求出AB的長(zhǎng),然后與半徑比較,即可確定點(diǎn)B的位置.
解答:解:AB=
(1+5)2+(0-7)2
=
85
>8,所以點(diǎn)B在⊙A外.
故選B.
點(diǎn)評(píng):本題考查的是點(diǎn)與圓的位置關(guān)系,根據(jù)平面直角坐標(biāo)系中兩點(diǎn)間距離公式,求出AB的長(zhǎng),然后與半徑比較可以確定點(diǎn)B的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、在平面直角坐標(biāo)系中,以點(diǎn)P(4,-3)為圓心的圓與x軸相切,那么該圓和y軸的位置關(guān)系是
相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系中,以點(diǎn)(2,3)為圓心,2為半徑的圓與x軸的位置關(guān)系是
相離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在直角坐標(biāo)系中,以點(diǎn)M(1,0)為圓心、直徑AC為2
2
的圓與y軸交于A、D兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)過(guò)點(diǎn)A的直線y=x+b與x軸交于點(diǎn)B.探究:直線AB是否⊙M的切線并對(duì)你的結(jié)論加以證明;
(3)在(2)的前提下,連接BC,記△ABC的外接圓面積為S1、⊙M面積為S2,若
S1
S2
=
h
4
,拋物線y=ax2+bx+c精英家教網(wǎng)經(jīng)過(guò)B、M兩點(diǎn),且它的頂點(diǎn)到x軸的距離為h.求這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,以點(diǎn)M(2,0)為圓心的⊙M與y軸相切于原點(diǎn)O,過(guò)點(diǎn)B(-2,0)作⊙M的切線,切點(diǎn)為C,拋物線y=-
3
3
x2+bx+c
經(jīng)過(guò)點(diǎn)B和點(diǎn)M.
(1)求這條拋物線解析式;
(2)求點(diǎn)C的坐標(biāo),并判斷點(diǎn)C是否在(1)中拋物線上;
(3)動(dòng)點(diǎn)P從原點(diǎn)O出發(fā),沿y軸負(fù)半軸以每秒1個(gè)單位長(zhǎng)的速度向下運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)t秒時(shí)到達(dá)點(diǎn)Q處.此時(shí)△BOQ與△MCB全等,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶)如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,
3
)為圓心,以2為半徑的圓與x軸交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A,B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案