【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(-1,0);⑤當1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
【答案】C
【解析】試題解析:∵拋物線的頂點坐標A(1,3),
∴拋物線的對稱軸為直線x=-=1,
∴2a+b=0,所以①正確;
∵拋物線開口向下,
∴a<0,
∴b=-2a>0,
∵拋物線與y軸的交點在x軸上方,
∴c>0,
∴abc<0,所以②錯誤;
∵拋物線的頂點坐標A(1,3),
∴x=1時,二次函數(shù)有最大值,
∴方程ax2+bx+c=3有兩個相等的實數(shù)根,所以③正確;
∵拋物線與x軸的一個交點為(4,0)
而拋物線的對稱軸為直線x=1,
∴拋物線與x軸的另一個交點為(-2,0),所以④錯誤;
∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(4,0)
∴當1<x<4時,y2<y1,所以⑤正確.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩人在一次射擊比賽中擊中靶的情況(擊中靶中心“×”所在的圓面為10環(huán),靶中各數(shù)字表示該數(shù)所在圓環(huán)被擊中所得的環(huán)數(shù)),每人射擊了6次.
(1)請用列表法將他倆的射擊成績統(tǒng)計出來;
(2)請你運用所學的統(tǒng)計知識做出分析,從兩個不同角度評價甲、乙兩人的打靶成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是用長度相等的小棒按一定規(guī)律擺成的一組圖案
(1)填寫下表:
圖形序號 | ① | ② | ③ | …… | ⑧ |
每個圖案中小棒的數(shù)量 | 6 | 11 | …… |
(2)請?zhí)顚懗龅?/span>個圖案中小棒的數(shù)量(用含的代數(shù)式表示);
(3)第30個圖案中小棒有多少根?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點A1、A2、A3,…和點B1、B2、B3,…分別在直線和軸上.已知C1(1,-1),C2(, ),則點A3的坐標是________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,O是坐標原點,以P(1,1)為圓心的⊙P與x軸、y軸分別相切于點M和點N,點F從點M出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,連接PF,過點P作PE⊥PF交y軸于點E,設點F運動的時間是t秒(t>0)
(1)若點E在y軸的負半軸上(如圖所示),求證:PE=PF;
(2)在點F運動過程中,設OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點F關于點M的對稱點F′,經(jīng)過M、E和F′三點的拋物線的對稱軸交x軸于點Q,連接QE.在點F運動過程中,是否存在某一時刻,使得以點Q、O、E為頂點的三角形與以點P、M、F為頂點的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,圖①、圖②、圖③均為頂點都在格點上的三角形(每個小方格的頂點叫格點),
(1)在圖1中,圖①經(jīng)過一次 變換(填“平移”或“旋轉(zhuǎn)”或“軸對稱”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過一次旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點 (填“A”或 “B”或“C”);
(3)在圖2中畫出圖①繞點A順時針旋轉(zhuǎn)90°后的圖④.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩個多項式A=9xy+7xy-x-2,B=3xy-5xy+x+7
(1)求A-3B;
(2)若要使A-3B的值與x的取值無關,試求y的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O任意轉(zhuǎn)動,如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O,A,B,C的坐標分別為(0,0),(-1,2),(-3,3)和(-2,1).
(1)若圖中的各個點的縱坐標不變,橫坐標都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說明一下變化.
(2)若圖中的各個點的橫坐標不變,縱坐標都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說明一下變化.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com