作業(yè)寶如圖,四邊形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,則BD的長等于________.

4
分析:延長BA、CD交于E,求出∠E,求出DE、CE長,在Rt△CBE中,求出BC,在Rt△CBD中,根據(jù)勾股定理求出BD即可.
解答:
延長BA、CD交于E,
∵∠C=90°,∠ABC=60°,
∴∠E=180°-90°-60°=30°,
∴DE=2AD=8,
∴CE=10+8=18,
∵tan∠ABC=,
∴tan60°=,
BC=6,
在Rt△BCD中,由勾股定理得:BD===4
故答案為:4
點評:本題考查了三角形的內(nèi)角和定理,含30度角的直角三角形,勾股定理的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行計算的能力,題目具有一定的代表性,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案