在平面直角坐標系中,拋物線過原點O,且與x軸交于另一點A,其頂點為B.孔明同學用一把寬為3cm帶刻度的矩形直尺對拋物線進行如下測量:
①量得OA=3cm;
②把直尺的左邊與拋物線的對稱軸重合,使得直尺左下端點與拋物線的頂點重合(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5.
請完成下列問題:
(1)寫出拋物線的對稱軸;
(2)求拋物線的解析式;
(3)將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H、G,交拋物線于點E、F.求證:S梯形EFGH=
16
(EF2-9).
精英家教網(wǎng)
分析:(1)由于O、A關于拋物線對稱軸對稱,且OA=3cm,由此可求得拋物線的對稱軸為x=
3
2

(2)根據(jù)O、A的坐標,可將拋物線解析式設為交點式,在(1)題求得了拋物線的對稱軸,即可得到B、C的橫坐標,分別代入拋物線的解析式中,表示出它們的縱坐標,根據(jù)C、B的縱坐標差為4.5即可列方程求出待定系數(shù)的值,從而確定拋物線的解析式.
(3)可設出E點的橫坐標,進而根據(jù)直尺的寬度得到F點的橫坐標,根據(jù)(2)題所得拋物線,即可表示出兩點的縱坐標,利用梯形的面積公式,可求出梯形EFGH的面積表達式,然后同
1
6
(EF2-9)進行比較即可.
解答:(1)解:直線x=
3
2


(2)解:設拋物線的解析式為:y=ax(x-3),
x=
3
2
時,y=-
9
4
a
,即B(
3
2
,-
9
4
a)
;
x=
9
2
時,y=
27
4
a
,即C(
9
2
27
4
a)
,精英家教網(wǎng)
依題意得:
27
4
a-(-
9
4
a)=4.5

解得:a=
1
2
,
∴拋物線的解析式為:y=
1
2
x2-
3
2
x


(3)證明:過點E作ED⊥FG,垂足為D,
E(x,
1
2
x2-
3
2
x)
,
F(x+3,
1
2
x2+
3
2
x)
,
得:S梯形EFGH=
3
2
(EH+FG)=
3
2
•[(
1
2
x2-
3
2
x)+(
1
2
x2+
3
2
x)]=
3
2
x2
,
1
6
(EF2-9)=
1
6
×9x2=
3
2
x2

∴S梯形EFGH=
1
6
(EF2-9)
點評:此題考查的知識點并不是很多,主要涉及二次函數(shù)解析式的確定以及圖形面積的求法,能夠從圖中獲得有效的信息是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案