【題目】如圖1,拋物線yax2+bx+3經(jīng)過(guò)點(diǎn)A(30),B(1,0)兩點(diǎn),拋物線的頂點(diǎn)為M,直線y=﹣4x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D

(1)求拋物線的解析式;

(2)過(guò)Q(0,3)作不平行于x軸的直線l

如圖2,將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),直線l交拋物線于點(diǎn)E、F,在y軸上存在一點(diǎn)P,使△PEF的內(nèi)心在y軸上,求點(diǎn)P的坐標(biāo);

直線l交△CMD的邊CM、CD于點(diǎn)G、H(G點(diǎn)不與M點(diǎn)重合、H點(diǎn)不與D點(diǎn)重合)S四邊形MDHG,SCGH分別表示四邊形MDHG和△CGH的面積,試探究的最大值.

【答案】(1)拋物線的解析式為yx2+4x+3(2)①點(diǎn)P坐標(biāo)為(0,﹣3);②當(dāng)x時(shí), 有最大值,最大值為

【解析】

1)將A3,0),B1,0)代入拋物線解析式,利用待定系數(shù)法即可求解;

2)①分別寫出拋物線平移后的解析式和直線EF的解析式,過(guò)PGHx軸,分別過(guò)E,FGH的垂線,垂足分別為G,H.由內(nèi)心的性質(zhì)得角等,再利用相似三角形的性質(zhì)可解;

②連接OG,由點(diǎn)C和點(diǎn)Q的坐標(biāo),得CQ等于2OQ,由點(diǎn)M和點(diǎn)D坐標(biāo),得MO等于OD,分別用三角形GQO的面積表示出三角形CGQ和三角形CGO的面積,

再設(shè)CG1,MGx,用含x的式子表示出相關(guān)三角形和四邊形MDHG的面積,最后將要求的比值轉(zhuǎn)化為關(guān)于x的二次函數(shù),從而可解.

(1)∵拋物線yax2+bx+3經(jīng)過(guò)點(diǎn)A(3,0)B(1,0)兩點(diǎn),

,解得

∴拋物線的解析式為yx2+4x+3

(2)①將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),其解析式為yx2,

EF過(guò)點(diǎn)(0,3),故設(shè)其解析式為ykx+3(k≠0)

設(shè)滿足條件地點(diǎn)P坐標(biāo)為(0,t),

如圖,過(guò)PGHx軸,分別過(guò)EFGH的垂線,垂足分別為G,H

∵△PEF的內(nèi)心在y軸上,

∴∠GEP=∠EPQ=∠QPF=∠HFP

∴△GEP∽△HFP,

,

2xF(t3)(xE+xF),

yx2,y=﹣kx+3x2kx30,

xE+xFkxExF=﹣3,

2k(3)(t3)k

k≠0,∴t=﹣3

∴點(diǎn)P坐標(biāo)為(0,﹣3)

②如圖,連接OG,

C(09)Q(0,3)

CQ2OQ,

又∵M(2,﹣1),D(2,1)

MOOD

設(shè)SGQOS,

SCGQ2SSCGO3S

不妨設(shè)CG1,MGx,則SMGO3xS,

SCMOSCQO+SMGO3S+3xS(3x+3)S,

SCMD2SCMO(6x+6)S,

設(shè)QHkQG,由SCGQ2S,得SCQH2kS,

SCGH(2k+2)S

S四邊形MDHG(6x+6)S(2k+2)S(6x2k+4)S,

,①

過(guò)點(diǎn)QQKMD,交CD于點(diǎn)K,過(guò)點(diǎn)GGNMD,交CD于點(diǎn)N,則QKGN

,

QKODMD;

GNMD

,

,

QKGN,

,

,

k

代入①式得:=﹣x2+x+1,

∴當(dāng)x時(shí), 有最大值,最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列尺規(guī)作圖中,能確定圓心的是(  )

如圖1,在圓上任取三個(gè)點(diǎn)A,BC,分別作弦AB,BC的垂直平分線,交點(diǎn)O即為圓心

如圖2,在圓上任取一點(diǎn)B,以B為圓心,小于直徑長(zhǎng)為半徑畫弧交圓于A,C兩點(diǎn)連結(jié)AB,BC,作∠ABC的平分線交圓于點(diǎn)D,作弦BD的垂直平分線交BD于點(diǎn)O,點(diǎn)O即為圓心

如圖3,在圓上截取弦ABCD,連結(jié)AB,BCCD,分別作∠ABC與∠DCB的平分線,交點(diǎn)O即為圓心

A. ①②B. ①③C. ②④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動(dòng)開始加熱[此過(guò)程中水溫y(℃)與開機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開始下降[此過(guò)程中水溫y(℃)與開機(jī)時(shí)間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時(shí),飲水機(jī)又自動(dòng)開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;

(2)求圖中t的值;

(3)若小明在通電開機(jī)后即外出散步,請(qǐng)你預(yù)測(cè)小明散步45分鐘回到家時(shí),飲水機(jī)內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波與臺(tái)州兩城市之間開通了動(dòng)車組高速列車.已知每隔1h有一列速度相同的動(dòng)車組列車從寧波開往臺(tái)州.如圖所示,OA是第一列動(dòng)車組列車離開寧波的路程s(單位:km)與運(yùn)行時(shí)間t(單位:h)的函數(shù)圖象,BC是一列從臺(tái)州開往寧波的普通快車距寧波的路程s(單位:km)與運(yùn)行時(shí)間t(單位:h)的函數(shù)圖象.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)點(diǎn)B橫坐標(biāo)0.5的意義是普通快車的發(fā)車時(shí)間比第一列動(dòng)車組列車的發(fā)車時(shí)間晚   h,點(diǎn)B的縱坐標(biāo)300的意義是   ;

(2)若普通列車的速度為100km/h,

BC的解析式;

求第二列動(dòng)車組列車出發(fā)后多長(zhǎng)時(shí)間與普通列車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“足球運(yùn)球”被列入中招體育必考項(xiàng)目.為此某學(xué)校舉行“足球運(yùn)球”達(dá)標(biāo)測(cè)試,將成績(jī)10分、9分、8分、7分,對(duì)應(yīng)定為A,B,CD四個(gè)等級(jí).某班根據(jù)測(cè)試成績(jī)繪制如下統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

(1)該班級(jí)的總?cè)藬?shù)為   m   

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)該班“足球運(yùn)球”測(cè)試的平均成績(jī)是多少?

(4)現(xiàn)準(zhǔn)備從等級(jí)為A4個(gè)人(22)中隨機(jī)抽取兩個(gè)人去參加比賽,請(qǐng)用列表或畫樹狀圖的方法,求出恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,DE平分∠ADB,交ABE,BF平分∠CBD,交CDF.

(1)求證:△ADE≌△CBF;

(2)當(dāng)ADBD滿足什么關(guān)系時(shí),四邊形DEBF是矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把長(zhǎng)方形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么,有下列說(shuō)法:①△EBD是等腰三角形,EBED;②折疊后∠ABE和∠CBD一定相等;③折疊后得到的圖形是軸對(duì)稱圖形;④△EBA和△EDC一定是全等三角形.其中正確的是( )

A. ①②③B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一個(gè)含有45°角的三角板的其中一個(gè)銳角頂點(diǎn)置于點(diǎn)A(﹣3,﹣3)處,將其繞點(diǎn)A旋轉(zhuǎn),這個(gè)45°角的兩邊所在的直線分別交x軸、y軸的正半軸于點(diǎn)B,C,連接BC,函數(shù)x0)的圖象經(jīng)過(guò)BC的中點(diǎn)D,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面內(nèi)的∠MAN及其內(nèi)部的一點(diǎn)P,設(shè)點(diǎn)P到直線AMAN的距離分別為d1,d2,稱這兩個(gè)數(shù)中較大的一個(gè)為點(diǎn)P關(guān)于的“偏率” . 在平面直角坐標(biāo)系xOy中,

1)點(diǎn)M,N分別為x軸正半軸,y軸正半軸上的兩個(gè)點(diǎn).

若點(diǎn)P的坐標(biāo)為(1,5),則點(diǎn)P關(guān)于的“偏率”為____________;

若第一象限內(nèi)點(diǎn)Qa,b)關(guān)于的“偏率”為1,則a,b滿足的關(guān)系為____________;

2)已知點(diǎn)A4,0),B2,),連接OBAB,點(diǎn)C是線段AB上一動(dòng)點(diǎn)(點(diǎn)C不與點(diǎn)A,B重合). 若點(diǎn)C關(guān)于的“偏率”為2,求點(diǎn)C的坐標(biāo);

3)點(diǎn)EF分別為x軸正半軸,y軸正半軸上的兩個(gè)點(diǎn),動(dòng)點(diǎn)T的坐標(biāo)為(t4),是以點(diǎn)T為圓心,半徑為1的圓. 上的所有點(diǎn)都在第一象限,且關(guān)于的“偏率”都大于,直接寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案