【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.
(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù);
(2)請(qǐng)求出何時(shí)△PBQ是直角三角形?
【答案】(1)不變,∠CMQ=60°;(2)當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形.
【解析】
試題分析:(1)先根據(jù)全等三角形的判定定理得出△ABQ≌△CAP,由全等三角形的性質(zhì)可知∠BAQ=∠ACP,故∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,故可得出結(jié)論;
(2)設(shè)時(shí)間為t秒,則AP=BQ=tcm,PB=(4﹣t)cm,當(dāng)∠PQB=90°時(shí),因?yàn)?/span>∠B=60°,所以PB=2BQ,即4﹣t=2t故可得出t的值,當(dāng)∠BPQ=90°時(shí),同理可得BQ=2BP,即t=2(4﹣t),由此兩種情況即可得出結(jié)論.
解:(1)不變,∠CMQ=60°.
∵△ABC是等邊三角形,
∴等邊三角形中,AB=AC,∠B=∠CAP=60°
又∵點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.
∴AP=BQ,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;
(2)設(shè)時(shí)間為t秒,則AP=BQ=tcm,PB=(4﹣t)cm,
當(dāng)∠PQB=90°時(shí),
∵∠B=60°,
∴PB=2BQ,即4﹣t=2t,t=,
當(dāng)∠BPQ=90°時(shí),
∵∠B=60°,
∴BQ=2BP,得t=2(4﹣t),t=,
∴當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:①無(wú)理數(shù)就是開(kāi)方開(kāi)不盡的數(shù);②一個(gè)實(shí)數(shù)的立方根不是正數(shù)就是負(fù)數(shù);③無(wú)理數(shù)包括正無(wú)理數(shù),0,負(fù)無(wú)理數(shù);④如果一個(gè)數(shù)的立方根是這個(gè)數(shù)本身,那么這個(gè)數(shù)是1或0.其中假命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以點(diǎn)A為頂點(diǎn)作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE.
(1)試判斷BD、CE的數(shù)量關(guān)系,并說(shuō)明理由;
(2)延長(zhǎng)BD交CE于點(diǎn)F試求∠BFC的度數(shù);
(3)把兩個(gè)等腰直角三角形按如圖2放置,(1)、(2)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是⊙O的內(nèi)接三角形,D是OA延長(zhǎng)線上的一點(diǎn),連接DC,且∠B=∠D=30°,AC=4.
(1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某班的一次語(yǔ)文測(cè)驗(yàn)中,有6名同學(xué)不及格,不及格率為12.5%,同時(shí)也有9名同學(xué)優(yōu)秀,則這個(gè)班在這次測(cè)驗(yàn)中的優(yōu)秀率為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:當(dāng)x=2時(shí),二次三項(xiàng)式x2﹣2mx+4的值等于﹣4.當(dāng)x為何值時(shí),這個(gè)二次三項(xiàng)式的值是﹣1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒(méi)有氣餒,總結(jié)反思后,和烏龜約定再賽一場(chǎng).圖中的函數(shù)圖象刻畫(huà)了“龜兔再次賽跑”的故事(x表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說(shuō)法:
①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時(shí)從起點(diǎn)出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說(shuō)法是 .(把你認(rèn)為正確說(shuō)法的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,正確的是( )
A. t5·t5 = 2t5 B. t4+t2 = t 6 C. t3·t4 = t12 D. t2·t3 = t5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com