如圖,一次函數(shù)y=kx+n的圖象與x軸和y軸分別交于點(diǎn)A(6,0)和B(0,2
3
),線段AB的垂直平分線交x軸于點(diǎn)C,交AB于點(diǎn)D.
(1)試確定這個(gè)一次函數(shù)關(guān)系式;
(2)求過A、B、C三點(diǎn)的拋物線的函數(shù)關(guān)系式.
(1)設(shè)直線AB的解析式為y=kx+2
3
,
由于直線過A點(diǎn).可得:
6k+2
3
=0,k=-
3
3

因此直線的解析式為:y=-
3
3
x+2
3


(2)根據(jù)A、B的坐標(biāo)可得AB=4
3
,
因此∠BAO=30°,
直角三角形ACD中,AD=2
3
,∠BAO=30°,
∴AC=4,OC=OA-AC=2,
因此:C(2,0);
設(shè)拋物線的解析式為y=k(x-2)(x-6),
將B點(diǎn)坐標(biāo)代入后得:k=
3
6

故拋物線的解析式為:y=
3
6
(x-2)(x-6).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)條件求二次函數(shù)的解析式:
(1)拋物線過(-1,-22),(0,-8),(2,8)三點(diǎn);
(2)有一個(gè)拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中如圖,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將二次函數(shù)y=2x2-8x-5的圖象沿它的對(duì)稱軸所在直線向上平移,得到一條新的拋物線,這條新的拋物線與直線y=kx+1有一個(gè)交點(diǎn)為(3,4).
求:(1)新拋物線的解析式及后的值;
(2)新拋物線與y=kx+1的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=(1-m)x2+4x-3開口向下,與x軸交于A(x1,0)和B(x2,0)兩點(diǎn),其中x1<x2
(1)求m的取值范圍;
(2)若x12+x22=10,求拋物線的解析式,并在給出的直角坐標(biāo)系中畫出這條拋物線;
(3)設(shè)這條拋物線的頂點(diǎn)為C,延長(zhǎng)CA交y軸于點(diǎn)D.在y軸上是否存在點(diǎn)P,使以P、B、O為頂點(diǎn)的三角形與△BCD相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為
5
的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)設(shè)(2)中拋物線的頂點(diǎn)為D,求△DBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______,點(diǎn)C的坐標(biāo)為______.
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)為M,求四邊形ABMC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用長(zhǎng)6米的鋁合金條制成如圖所示的矩形窗框,則這個(gè)窗戶的最大透光面積為______米2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某玩具廠計(jì)劃生產(chǎn)一種玩具熊貓,每日最高產(chǎn)量為40只,且每日產(chǎn)出的產(chǎn)品全部售出.已知生產(chǎn)x只玩具熊貓的成本為R(元),售價(jià)每只為P(元),且R、P與x的關(guān)系式分別為R=500+30x,P=170-2x.
(1)當(dāng)日產(chǎn)量為多少時(shí),每日獲得的利潤(rùn)為1750元?
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在綜合實(shí)踐課上,小明要用如圖所示的矩形硬紙板做一個(gè)裝垃圾的無蓋紙盒.已知這張矩形硬紙板ABCD邊AB的長(zhǎng)是40cm,邊AD的長(zhǎng)是20cm,裁去角上四個(gè)小正方形之后,就可以折成一個(gè)無蓋紙盒.設(shè)這個(gè)無蓋紙盒的底面矩形EFMN的面積是y(單位:cm2),紙盒的高是x(單位:cm).
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)老師要求,小明做的無蓋紙盒的高x不能超過寬EF且紙盒的底面矩形EFMN的面積y等于300cm2,求紙盒高的最大整數(shù)值x是多少cm?

查看答案和解析>>

同步練習(xí)冊(cè)答案