【題目】如圖,已知點,直線與兩坐標軸分別交于A,B兩點點D,E分別是OB,AB上的動點,則周長的最小值是______.
【答案】
【解析】
作點C關(guān)于OB的對稱點 ,作點C關(guān)于AB的對稱點,連接,交AB于點E,交OB于點D,此時周長最小,可以證明這個最小值就是線段,根據(jù)勾股定理可求周長的最小值.
如圖,作點C關(guān)于OB的對稱點,作點C關(guān)于AB的對稱點,連接,交AB于點E,交OB于點D,
直線與兩坐標軸分別交于A,B兩點
點,點
,且,
,
點C關(guān)于OB的對稱點,
∴,
點C關(guān)于AB的對稱點,
∴AC=,∠BAO=∠=45°,
∴=90°,
點
由軸對稱的性質(zhì),可得CE=,CD=D,
當點,點E,點D,點共線時,的周長=CD+CE+DE=+DE+D=,
此時的周長最小,
在Rt△中, .
的周長最小值為
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究
(1)如圖1,請在半徑為的半圓內(nèi)(含弧和直徑)畫出面積最大的三角形,并求出這個三角形的面積;
(2)如圖2,請在半徑為的內(nèi)(含弧)畫出面積最大的矩形,并求出這個矩形的面積;
問題解決
(3)如圖3,是一塊草坪,其中,,,某開發(fā)商現(xiàn)準備再征一塊地,把擴充為四邊形,使,是否存在面積最大的四邊形?若存在,求出四邊形的最大面積;若不存在,請說明理由.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格上有6個三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF. 在②~⑥中,與①相似的三角形的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析式為y=2x﹣2,直線l1與x軸交于點D,直線l2:y=kx+b與x軸交于點A,且經(jīng)過點B,直線l1、l2交于點C(m,2).
(1)求m;
(2)求直線l2的解析式;
(3)根據(jù)圖象,直接寫出1<kx+b<2x﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)計劃把一批貨物用一列火車運往某地已知這列火車可掛A,B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用6000元,使用B型車廂每節(jié)費用為8000元.
設(shè)運送這批貨物的總費用為y元,這列火車掛A型車廂x節(jié),寫出y關(guān)于x的函數(shù)表達式,并求出自變量x的取值范圍;
已知A型車廂數(shù)不少于B型車廂數(shù),運輸總費用不低于276000元,問有哪些不同運送方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長為1,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應(yīng)點B′,利用網(wǎng)格點畫圖和無刻度的直尺畫圖并解答(保留畫圖痕跡):
(1)畫出△A′B′C′;
(2)畫出△ABC的高,即線段BD;
(3)連接AA′、 CC′,那么AA′與CC′的關(guān)系是________;線段AC掃過圖形的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CB∥OA,∠C=∠A=120°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個動點,F是AB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的( ).
A. 線段EC B. 線段AE C. 線段EF D. 線段BF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com