【題目】如圖,點(diǎn)O為等腰三角形ABC底邊BC的中點(diǎn),,,腰AC的垂直平分線EF分別交AB、AC于E、F點(diǎn),若點(diǎn)P為線段EF上一動(dòng)點(diǎn),則△OPC周長(zhǎng)的最小值為_________.
【答案】27.
【解析】
連接AO,由于△ABC是等腰三角形,點(diǎn)O是BC邊的中點(diǎn),故AO⊥BC,再根據(jù)勾股定理求出AO的長(zhǎng),再再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,故AO的長(zhǎng)為CP+PO的最小值,由此即可得出結(jié)論.
連接AO,
∵△ABC是等腰三角形,點(diǎn)O是BC邊的中點(diǎn),
∴AO⊥BC,
∴,
∵EF是線段AC的垂直平分線,
∴點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)A,
∴AO的長(zhǎng)為CP+PO的最小值,
∴△OPC周長(zhǎng)的最小值.
故答案為:27.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時(shí)從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來(lái)時(shí)騎行速度原路返回,在公園入口處改為步行,并按來(lái)時(shí)步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過(guò)程中離出發(fā)地的路程與出發(fā)的時(shí)間的函數(shù)關(guān)系如圖.
(1)圖中m=_____,n=_____;(直接寫(xiě)出結(jié)果)
(2)小明若要在爸爸到家之前趕上,問(wèn)小明回家騎行速度至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市每天都用360元從批發(fā)商城批發(fā)甲乙兩種型號(hào)“垃圾分類”垃圾桶進(jìn)行零售,批發(fā)價(jià)和零售價(jià)如下表所示:
批發(fā)價(jià)(元個(gè)) | 零售價(jià)(元/個(gè)) | |
甲型號(hào)垃圾桶 | 12 | 16 |
乙型號(hào)垃圾桶 | 30 | 36 |
若設(shè)該超市每天批發(fā)甲型號(hào)“垃圾分類”垃圾桶x個(gè),乙型號(hào)“垃圾分類”垃圾桶y個(gè),
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若某天該超市老板想將兩種型號(hào)的“垃圾分類”垃圾桶全部售完后,所獲利潤(rùn)率不低于30%,則該超市至少批發(fā)甲型號(hào)“垃圾分類”垃圾桶多少個(gè)?(利潤(rùn)率=利潤(rùn)/成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是內(nèi)的一點(diǎn).
(1)如圖,平分交于點(diǎn),點(diǎn)在線段上(點(diǎn)不與點(diǎn)、重合),且,求證:.
(2)如圖,若是等邊三角形,,,以為邊作等邊,連.當(dāng)是等腰三角形時(shí),試求出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求證:等腰三角形兩腰上的中線相等.
(1)請(qǐng)用尺規(guī)作出△ABC兩腰上的中線BD、CE(保留痕跡,不寫(xiě)作法);
(2)結(jié)合圖形,寫(xiě)出已知、求證和證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Q為正方形ABCD的CD邊上一點(diǎn),CQ=1,DQ=2,P為BC上一點(diǎn),若PQ⊥AQ,則CP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且CF=AE
(1)試探究,四邊形BECF是什么特殊的四邊形;
(2)當(dāng)的大小滿足什么條件時(shí),四邊形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.
(特別提醒:表示角最好用數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個(gè)結(jié)論,①abc<0; ②2a+b=0;③b2﹣4ac<0;④a+b+c>0;⑤a﹣b+c<0.其中正確的結(jié)論有________(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com