當a<0時,拋物線y=x2+2ax+1+2a2的頂點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限
∵y=ax2+bx+c的頂點坐標公式為(-
b
2a
,
4ac-b2
4a

∴拋物線y=x2+2ax+1+2a2的頂點坐標橫坐標是-a,是正數(shù),
縱坐標是:
4(1+2a2)-4a2
4
=1+a2>0,
∴頂點橫坐標大于0,縱坐標大于0,因而點在第一象限
故選A.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連精英家教網(wǎng)接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應(yīng)的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平面直角坐標系xOy中,點A(2,m),B(-3,n)為兩動點,其中m>1,連接O精英家教網(wǎng)A,OB,OA⊥OB,作BC⊥x軸于C點,AD⊥x軸于D點.
(1)求證:mn=6;
(2)當S△AOB=10時,拋物線經(jīng)過A,B兩點且以y軸為對稱軸,求拋物線對應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:2?若存在,求出直線l對應(yīng)的函數(shù)關(guān)系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,是某市一條河上一座古拱撟的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線拱橋處于正常水位時水面寬AB為26m,當水位上漲1m時,拋物線拱橋的水面寬CD為24m.現(xiàn)以水面AB所在直線為x軸,拋物線的對稱軸為y軸建立直角坐標系.
(1)求出拋物線的解析式;
(2)經(jīng)過測算,水面離拱橋頂端1.5m時為警戒水位.某次洪水到來時,小明用儀器測得水面寬為10m,請你幫助小明算一算,此時水面是否超過警戒水位?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

拋物線y=x2+2kx+1,當k=
±1
±1
時,拋物線與x軸相交于一點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線y=ax+c與拋物線y=ax2+bx+c(a≠0,b≠0)分別相交于A(0,C),B(1-b,m)兩點,拋物線y=ax2+bx+c與x軸交于C,D兩點,頂點為P.
(1)求a的值.
(2)如果CD=2,當-1≤x≤1時,拋物線y=ax2+bx+c的最大值與最小值的差為4,求點的B坐標.

查看答案和解析>>

同步練習冊答案