【題目】有五條線段,長度分別是2,4,6,8,10,從中任取三條能構(gòu)成三角形的概率是( )
A.
B.
C.
D.

【答案】B
【解析】解:所有的情況有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10種,其中能構(gòu)成三角形的有:4,6,8;6,8,10;4,8,10,共3種,

則P=

所以答案是:B.

【考點精析】掌握三角形三邊關(guān)系和列表法與樹狀圖法是解答本題的根本,需要知道三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊;當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果α是銳角,且tanα=cot20°,那么α=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是

A. 5 (6) 11 B. 1.3 (1.7) 3

C. (11) 7 4 D. (7) (8) 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開,得到AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足BQP=B,則下列五個數(shù)據(jù),3,,2,中可以作為線段AQ長的有 個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.

(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).

(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(a,2013)與點B(2014,b)關(guān)于x軸對稱,則a+b的值為(
A.﹣1
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OM⊥AB.

(1)若∠1=∠2,求∠NOD.
(2)若∠1= ∠BOC,求∠AOC與∠MOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=20cm,直線AB上有一點C,且BC=6cm,點M是線段AB的中點,點N是線段BC的中點,則MN=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讀句畫圖并回答問題:

(1)過點A畫AD⊥BC,垂足為D.比較AD與AB的大。篈DAB;
(2)用直尺和圓規(guī)作∠CDE,使∠CDE=∠ABC,且與AC交于點E.此時DE與AB的位置關(guān)系是

查看答案和解析>>

同步練習(xí)冊答案