【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開,得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足∠BQP=∠B,則下列五個數(shù)據(jù),3,,2,中可以作為線段AQ長的有 個.
【答案】3.
【解析】
試題分析:作CD∥PQ,交AB于D,如圖所示:
則∠CDB=∠BQP,∵AB=AC=5,∴∠B=∠ACB,∵∠BQP=∠B,∴∠B=∠ACB=∠CDB,∴CD=BC=3,△BCD∽△BAC,∴,即,解得:BD=,∴AD=AB﹣BD=,∵CD∥PQ,∴△APQ∽△ACD,∴,即,解得:AP=AQ,當(dāng)AQ=時,AP=×=>5,不合題意,舍去;
當(dāng)AQ=3時,AP=×3=<5,符合題意;
當(dāng)AQ=時,點P與C重合,不合題意,舍去;
當(dāng)AQ=2時,AP=×2=<5,符合題意;
當(dāng)AQ=時,AP=×=<5,符合題意;
綜上所述:可以作為線段AQ長的有3個;
故答案為:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)已知a+b=-3,ab=5,求多項式4a2b+4ab2-4a-4b的值;
(2)已知x2-3x-1=0,求代數(shù)式3-3 x2+9x的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形OABC中,OA=3,AB=6,以O(shè)A,OC所在的直線為坐標(biāo)軸,建立如圖1的平面直角坐標(biāo)系.將矩形OABC繞點O順時針方向旋轉(zhuǎn),得到矩形ODEF,當(dāng)點B在直線DE上時,設(shè)直線DE和x軸交于點P,與y軸交于點Q.
(1)求證:△BCQ≌△ODQ;
(2)求點P的坐標(biāo);
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設(shè)矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請直接寫出x≤3時,S與x之間的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】震驚世界的MH370失聯(lián)事件發(fā)生后第30天,中國“海巡01”輪在南印度洋海域搜索過程中,首次偵聽到疑是飛機黑匣子的脈沖信號,探測到的信號所在海域水深4500米左右,其中4500用科學(xué)記數(shù)法表示為( )
A.4.5×102
B.4.5×103
C.45.0×102
D.0.45×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是( )
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學(xué)生參加決賽,他們決賽的成績各不相同,其中的一名學(xué)生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學(xué)生成績的( )
A.眾數(shù)
B.中位數(shù)
C.平均數(shù)
D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PE⊥BC于點E,過點E作EF∥AC,交AB于點F.設(shè)PC=x,PE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)是否存在點P使△PEF是Rt△?若存在,求此時的x的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com