已知:如圖,△ABC中,AB=AC,∠A=120°.
(1)用直尺和圓規(guī)作AB的垂直平分線,分別交BC、AB于點M、N(保留作圖痕跡,不寫作法).
(2)猜想CM與BM之間有何數(shù)量關(guān)系,并證明你的猜想。
(1)作圖如下:
(2)CM=2BM.
解析試題分析:(1)尺規(guī)作圖,要按照規(guī)范畫圖進行,要顯示作圖痕跡.
(2)明確△ABC各內(nèi)角的度數(shù),根據(jù)垂直平分線的性質(zhì),連接AM,把原三角形分成兩個特殊三角形進行分析,得出結(jié)論.
(1)作圖如下:
(2)CM=2BM
證明:連接AM,則BM=AM
∵AB=AC,∠BAC=120°
∴∠B=∠C=30°,∴∠MAB=∠B=30°,∠MAC=90°
∴AM=CM,故BM=CM,
即CM=2BM.
考點:本題考查了尺規(guī)作圖,等腰三角形的性質(zhì),含30°角的直角三角形的性質(zhì)
點評:解答本題的關(guān)鍵是熟練掌握尺規(guī)作圖中線段垂直平分線的作法,含30°角的直角三角形的性質(zhì):30°角所對的直角邊等于斜邊的一半.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com