如圖,已知△ABC是⊙O的內(nèi)接三角形,D是OA延長(zhǎng)線上的一點(diǎn),連接DC,且∠B=∠D=30°,AC=4.
(1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求陰影部分的面積.
【考點(diǎn)】切線的判定;扇形面積的計(jì)算.
【專題】計(jì)算題.
【分析】(1)連結(jié)OC,如圖,根據(jù)圓周角定理得到∠AOC=2∠B=60°,則利用三角形內(nèi)角和可計(jì)算出∠OCD=90°,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理可判斷CD為⊙O的切線;
(2)先判斷△AOC為等邊三角形,則OA=AC=4,然后根據(jù)扇形面積公式和等邊三角形的面積公式,利用S陰影部分=S扇形AOC﹣S△OAC進(jìn)行計(jì)算.
【解答】解:(1)直線CD為⊙O的切線.理由如下:
連結(jié)OC,如圖,
則∠AOC=2∠B=60°,
∵∠D=30°,
∴∠OCD=180°﹣30°﹣60°=90°,
∴OC⊥CD,
∴CD為⊙O的切線;
(2)∵OA=OC,∠AOC=60°,
∴△AOC為等邊三角形,
∴OA=AC=4,
∴S陰影部分=S扇形AOC﹣S△OAC
=﹣•42
=π﹣4.
【點(diǎn)評(píng)】本題考查了切線的判定:切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.也考查了扇形面積公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
長(zhǎng)為4 m的梯子搭在墻上與地面成45°角,作業(yè)時(shí)調(diào)整為60°角(如圖所示),則梯子的頂端沿墻面升高了______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB為半圓O的直徑,C為半圓上一點(diǎn),且弧AC為半圓的,設(shè)扇形AOC,△COB,弓形BmC的面積分別為S1,S2,S3,則下列結(jié)論正確的是( )
A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S1<S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
觀察下列圖形規(guī)律:當(dāng)n= 時(shí),圖形“●”的個(gè)數(shù)和“△”的個(gè)數(shù)相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)y=a(x﹣m)2+n的圖象經(jīng)過(guò)(0,5)、(10,8)兩點(diǎn).若a<0,0<m<10,則m的值可能是( )
A.2 B.8 C.3 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列選項(xiàng)中一元二次方程的是( 。
A.x=2y﹣3 B.2(x+1)=3 C.2x2+x﹣4 D.5x2+3x﹣4=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AD是⊙O的直徑.
(1)如圖1,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數(shù)是 ,∠B2的度數(shù)是 ;
(2)如圖2,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,則∠B3的度數(shù)是 ;
(3)如圖3,垂直于AD的n條弦B1C1,B2C2,B3 C3,…,BnCn把圓周2n等分,則∠Bn的度數(shù)是 (用含n的代數(shù)式表示∠Bn的度數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com