【題目】過線段的兩端作,,連、交于,,那么點(diǎn)到線段的距離為________

【答案】

【解析】

分①AC,BDAB的兩側(cè);②AC、BDAB的同側(cè)兩種情況,根據(jù)平行線分線段成比例定理以及比例的性質(zhì)進(jìn)行變形即可得到答案.

①如圖,若AC,BDAB的兩側(cè),作OPABBA延長線于P,則OPCABD,

所以OP:DB=AO:AD

AO:DO=CA:DB=a:b

所以AO:AD=a:(b-a)

所以OP:b=a:(b-a)

所以OP=

②如圖,若AC、BDAB的同側(cè)

OPABP,則CAOPBD

因?yàn)?/span>OP:DB=AO:AD

AO:DO=CA:DB=a:b

所以AO:AD=a:(a+b)

所以OP:b=a:(a+b)

所以OP=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2-3與直線y=kx(k≠0)相交于點(diǎn)A和點(diǎn)B,則一元二次方程x2-kx-3=0的解的情況是( )

A. 有兩個(gè)不相等的正實(shí)根 B. 有兩個(gè)不相等的負(fù)實(shí)根

C. 一個(gè)正實(shí)根、一個(gè)負(fù)實(shí)根 D. 有兩個(gè)相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,將繞點(diǎn)按順時(shí)針旋轉(zhuǎn)得到,連接,它們交于點(diǎn),

求證:

當(dāng),求的度數(shù).

當(dāng)四邊形是菱形時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩個(gè)全等的等邊拼成如圖的菱形.現(xiàn)把一個(gè)含角的三角板與這個(gè)菱形疊合,使三角板的角的頂點(diǎn)與點(diǎn)重合,兩邊分別與重合.將三角板繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn).

如圖,當(dāng)三角板的兩邊分別與菱形的兩邊、相交于點(diǎn)、時(shí),探求、的數(shù)量關(guān)系,并說明理由;

繼續(xù)旋轉(zhuǎn)三角板,當(dāng)兩邊、分別交的延長線于點(diǎn)、時(shí),畫出旋轉(zhuǎn)后相應(yīng)的圖形,并直接寫出、、滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,EF分別為邊AB、CD的中點(diǎn),BD是對角線,AG∥DBCB的延長線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,,

為邊BC上一點(diǎn),將沿直線AP翻折至的位置點(diǎn)B落在點(diǎn)E

如圖1,當(dāng)點(diǎn)E落在CD邊上時(shí),利用尺規(guī)作圖,在圖1中作出滿足條件的圖形不寫作法,保留作圖痕跡,用2B鉛筆加粗加黑并直接寫出此時(shí)______

如圖2,若點(diǎn)PBC邊的中點(diǎn),連接CE,則CEAP有何位置關(guān)系?請說明理由;

點(diǎn)Q為射線DC上的一個(gè)動(dòng)點(diǎn),將沿AQ翻折,點(diǎn)D恰好落在直線BQ上的點(diǎn)處,則______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB

(1)△BPQ 三角形;

(2)求PQ的長度;

(3)求∠APB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面竹桿頂端離地面,小明到竹桿的距離竹桿到塔底的距離,求這座古塔的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊ADE點(diǎn)上,折痕的一端G點(diǎn)在邊BC上,BG=10.

①第一次折疊:當(dāng)折痕的另一端點(diǎn)FAB邊上時(shí),如圖1,求折痕GF的長;

②第二次折疊:當(dāng)折痕的另一端點(diǎn)FAD邊上時(shí),如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長.

(2)拓展延伸:通過操作探究發(fā)現(xiàn)在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ.當(dāng)點(diǎn)A′BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P,Q也隨之移動(dòng).若限定點(diǎn)P,Q分別在AB,AD邊上移動(dòng),則點(diǎn)A′BC邊上可移動(dòng)的最大距離是   

查看答案和解析>>

同步練習(xí)冊答案