【題目】(2019·信陽一模)如圖,銳角三角形ABC中,BC=6,BC邊上的高為4,直線MN交邊AB于點M,交AC于點N,且MN∥BC,以MN為邊作正方形MNPQ,設(shè)其邊長為x(x>0),正方形MNPQ與△ABC公共部分的面積為y,則y與x的函數(shù)圖象大致是( )
A.B.C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解初一年級學(xué)生每學(xué)期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機(jī)抽樣調(diào)查了部分初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:
(I)本次隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的m的值為 ;
(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(III)若該區(qū)初一年級共有學(xué)生2500人,請估計該區(qū)初一年級這個學(xué)期參加綜合實踐活動的天數(shù)大于4天的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題探究)如圖1,,直線,垂足為,交于點,點到直線的距離為2,點到的距離為1,,,則的最小值是______;(提示:將線段沿方向平移1個單位長度即可解決,如圖2所示.)
(關(guān)聯(lián)運用)如圖3,在等腰和等腰中,,在直線上,,連接、,則的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
根據(jù)以上信息解決下列問題:
(1) , ;
(2)扇形統(tǒng)計圖中機(jī)器人項目所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點G在邊DC的延長線上,AG交邊BC于點E,交對角線BD于點F.
(1)求證:AF2=EFFG;
(2)如果EF=,F(xiàn)G=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店準(zhǔn)備購進(jìn)A、B兩種品牌的文具袋進(jìn)行銷售,若購進(jìn)A品牌文具袋和B品牌文具袋各5個共花費120元,購進(jìn)A品牌文具袋3個和B品牌文具袋4個共花費88元.
(1)求購進(jìn)A品牌文具袋和B品牌文具袋的單價;
(2)若該文具店購進(jìn)了A,B兩種品牌的文具袋共100個,其中A品牌文具袋售價為12元,B品牌文具袋售價為23元,設(shè)購進(jìn)A品牌文具袋x個,獲得總利潤為w元.
①求w關(guān)于x的函數(shù)關(guān)系式;
②要使銷售文具袋的利潤最大,且所獲利潤不低于進(jìn)貨價格的45%,請你幫該文具店設(shè)計一個進(jìn)貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖. 已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,日銷售量與時間第天之間的函數(shù)關(guān)系式為(,為整數(shù)),銷售單價(元/)與時間第天之間滿足一次函數(shù)關(guān)系如下表:
時間第天 | 1 | 2 | 3 | … | 80 |
銷售單價(元/) | 49. 5 | 49 | 48. 5 | … | 10 |
(1)寫出銷售單價(元/)與時間第天之間的函數(shù)關(guān)系式;
(2)在整個銷售旺季的80天里,哪一天的日銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交與O點,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列4個結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④CF=BD.正確的結(jié)論是( 。
A.①②④B.①④C.③④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②>0;③ac﹣b+1=0;④2a+b=0其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com