精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,∠B= 90°,點P從A點開始沿AB邊向點B以1厘米/秒的速度移動,點Q從B點開始沿BC邊向點C以2厘米/秒的速度移動。

(1)如果P、Q分別從A、B兩點同時出發(fā),經過幾秒鐘,△PBQ的面積等于8厘米2?
(2)如果P、Q兩分別從A、B兩點同時出發(fā),并且P到B又繼續(xù)在BC邊上前進,Q到C后又繼續(xù)在CA邊上前進,經過幾秒鐘,△PCQ的面積等于12﹒6厘米2

試題分析:設經過x秒使△PBQ得面積等于8平方厘米,根據AB=6厘米,BC=8厘米,點P從點A開始沿AB邊向B以1厘米/秒的速度移動和三角形的面積公式,列出方程,再進行求解即可;
(2)設經x秒,點P移動到BC上,且有CP=(14-x)cm,點Q移動到CA上,且使CQ=(2x-8)cm,過Q作QD⊥CB,垂足為D,根據QD⊥CB,∠B=90°,得出DQ∥AB,從而得出△CQD∽△CAB,即可求出QD的值,最后根據三角形的面積公式,即可得出x的值,再根據實際情況,即可為得出答案.
試題解析:(1)設經過x秒使△PBQ得面積等于8平方厘米,根據題意得:×2x(6-x)=8,
整理得:(x-2)(x-4)=0,
解得:x1=2,x2=4,
答:經過2秒或4秒,使△PBQ得面積等于8平方厘米;
(2)設經x秒,點P移動到BC上,且有CP=(14-x)cm,點Q移動到CA上,且使CQ=(2x-8)cm,
過Q作QD⊥CB,垂足為D,
∵QD⊥CB,∠B=90°,
∴DQ∥AB,
∴∠CDQ=∠CAB,
∴△CQD∽△CAB,
,即:QD=,
由題意得(14-x)•=12.6,
解得:x1=7,x2=11,
經7秒,點P在BC上距離C點7cm處,點Q在CA上距離C點6cm處,使△PCQ的面積等于12.6cm2
經11秒,點P在BC上距離C點3cm處,點Q在CA上距離C點14cm處,14>10,點Q已超出CA的范圍,此解不存在;
綜上所述,經過7秒△PCQ的面積等于12.6cm2
考點: 一元二次方程的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥CD,∠DAB=90°,AC⊥BC.

(1)求證:△ADC∽△BCA;
(2)若AB=9cm,AC=6cm,求梯形ABCD中位線的長度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,等腰中,,D是BC上一點,且.

(1)求證:;
(2)若,,求BC的長;
(3)若,求的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

小明對直角三角形很感興趣. △ABC中,∠ACB=90°,D是AB上任意一點,連接DC,作DE⊥DC,EA⊥AC,DE與AE交于點E.請你跟著他一起解決下列問題:

(1)如圖1,若△ABC是等腰直角三角形,則DE,DC有什么數量關系?請給出證明.
(2)如果換一個直角三角形,如圖2,∠CBA=30°,則DE,DC又有什么數量關系?請給出證明.
(3)由(1)、(2)這兩種特殊情況,小明提出問題:如果直角三角形ABC中,BC=mAC,那DE, DC有什么數量關系?請給出證明.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,、兩點分別在的邊、上,不平行,當滿足條件(寫出一個即可)                    時,

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

老師要求同學們在圖①中內找一點P,使點P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結AB,取AB中點P,點P即為所求.
請你在圖②中的內找一點P,使點P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)如圖所示,如果你的位置在點A,你能看到后面那座高大的建筑物嗎?為什么?

(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當你至少與M樓相距多少m時,才能看到后面的N樓?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列四組圖形中,不是相似圖形的是(  )

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△和△中,,為線段上一點,且
求證:

查看答案和解析>>

同步練習冊答案