【題目】如圖,直線y=x+1分別與x軸、y軸相交于點(diǎn)A、B,以點(diǎn)A為圓心、AB長(zhǎng)為半徑畫弧交x軸于點(diǎn)A1,再過點(diǎn)A1x軸的垂線交直線于點(diǎn)B1,以點(diǎn)A為圓心、AB1長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2……按此做法進(jìn)行下去,則點(diǎn)A8的坐標(biāo)是________

【答案】(15,0)

【解析】

由勾股定理分別求出AA1,AA2,AA3,寫出A1(-1,0),A2(-1,0),A3(-1,0);再分析坐標(biāo)的概率.

根據(jù)題意可知:當(dāng)x=0時(shí),y=1;當(dāng)y=0時(shí),x=-1;利用勾股定理求出AA1=,AA2=AB1==2,AA3=AB2==

得到各點(diǎn)坐標(biāo)A1-1,0),A2-1,0),A3-1,0);

找到規(guī)律即可解得答案A8=

故答案為:15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)文化課題活動(dòng)中,把一副數(shù)學(xué)文化創(chuàng)意撲克牌中的4張撲克牌(如圖所示)洗勻后正面向下放在桌面上,從中隨機(jī)抽取2張牌,請(qǐng)你用列表或畫樹狀圖的方法,求抽取的2張牌的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b互為相反數(shù),b、C互為倒數(shù),并且m的立方等于它本身

(1)+ac;

(2)a>1,且m<0,S=|2a-3b|-2|b-m|-|b+|,2a-S的值.

(3)m≠0,試討論:x為有理數(shù)時(shí)|x+m|-|x-m|是否存在最大值?若存在,求出這個(gè)最大值:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點(diǎn)B的坐標(biāo);

(2)在點(diǎn)P的運(yùn)動(dòng)過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說明理由.

(3)連接OQ,當(dāng)OQAB時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-2x+1的圖象與y軸交于點(diǎn)A.

(1)若點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)B在一次函數(shù)y=x+b的圖象上,求b的值,并在同一坐標(biāo)系中畫出該一次函數(shù)的圖象;

(2)求這兩個(gè)一次函數(shù)的圖象與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)OBD的中點(diǎn),若M、N是邊AD上的兩點(diǎn),連接MO、NO,并分別延長(zhǎng)交邊BC于兩點(diǎn)M′、N′,則圖中的全等三角形共有( 。

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C、E分別為△ABD的邊BD、AB上兩點(diǎn),且AE=AD,CE=CD,D=70゜,ECD=150゜,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖像如圖所示,則關(guān)于x的不等式kx+b﹣ ≤﹣2的解集為(
A.0<x≤2或x≤﹣4
B.﹣4≤x<0或x≥2
C. ≤x<0或x
D.x 或0

查看答案和解析>>

同步練習(xí)冊(cè)答案