如圖,直線y=k和雙曲線y=數(shù)學(xué)公式相交于點P,過P點作PA0垂直于x軸,垂足為A0,x軸上的點A0,A1,A2的橫坐標(biāo)是連續(xù)的整數(shù),過點A1,A2別作x軸的垂線,與雙曲線y=數(shù)學(xué)公式(x>0)及直線y=k分別交于點B1,B2,C1,C2
(1)求A0點坐標(biāo);
(2)求數(shù)學(xué)公式數(shù)學(xué)公式的值.

解:(1)根據(jù)題意可得:
解可得
∴P(1,k)
∵點P與點A0的橫坐標(biāo)相同,且點A0在x軸上,
∴A0(1,0)

(2)由題意,得A1(2,0)、A2(3,0),
∴A1C1=k,A1B1=,
∴C1B1=A1C1-A1B1=,
==1;
同理,可求得A2C2=k,A2B2=,C2B2=
=2.
分析:(1)根據(jù)題意,聯(lián)立y=k和雙曲線y=可得方程組,又由點P與點A0的橫坐標(biāo)相同,且點A0在x軸上,解可得答案;
(2)由題意,得A1(2,0)、A2(3,0),可得C1B1=A1C1-A1B1=,進(jìn)而可得A2C2=k,A2B2=,C2B2=,計算可得答案.
點評:本題考查了反比例函數(shù)、一次函數(shù)的圖象的性質(zhì)以及其性質(zhì)的運用,利用形數(shù)結(jié)合解決此類問題,是非常有效的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,精英家教網(wǎng)線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,精英家教網(wǎng)以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運卡車高4.2m,寬2.4米,這輛貨運卡車能否通過該隧道?通過計算說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個定點,教練船靜候于點O,訓(xùn)練時要求A、B兩船始終關(guān)于O點對稱.以O(shè)為原點,建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=
4x
上運動,湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中檔教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).
(1)發(fā)現(xiàn)C船時,A、B、C三船所在位置的坐標(biāo)分別為A(
 
,
 
)、B(
 
,
 
)和C(
 
 
);
(2)發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:安徽省期末題 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8cm,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m。
(1)求拋物線的函數(shù)關(guān)系式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2007•佛山)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
(1)求拋物線的解析式;
(2)一輛貨運卡車高4.5m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?

查看答案和解析>>

同步練習(xí)冊答案