(2008•宜賓)已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點(diǎn)A(-1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為E.求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為

【答案】分析:(1)由于拋物線的解析式中只有兩個(gè)未知數(shù),因此可根據(jù)A,B兩點(diǎn)的坐標(biāo),用待定系數(shù)法求出拋物線的解析式.
(2)由于四邊形ABDE不是規(guī)則的四邊形,因此可將ABDE分割成幾個(gè)規(guī)則的圖形后再進(jìn)行求解.可設(shè)拋物線的對(duì)稱軸與x軸的交點(diǎn)為F,那么四邊形ABDE的面積=三角形AOB的面積+直角梯形BOFD的面積+三角形DFE的面積,根據(jù)拋物線的解析式可求得D、E兩點(diǎn)的坐標(biāo),因此就可求出DF、OF、EF的長(zhǎng),根據(jù)A、B兩點(diǎn)的坐標(biāo)可得出OA、OB的長(zhǎng),那么求這些圖形面積的相關(guān)線段的長(zhǎng)就都已求出,進(jìn)而可得出四邊形ABDE的面積.
(3)可先根據(jù)B、D、E的坐標(biāo),求出BD、DE、BE的長(zhǎng),由于三角形AOB是直角三角形,要想判定兩三角形是否相似,就要先判斷三角形BDE是否為直角三角形,可根據(jù)BD、DE、BE三邊的長(zhǎng)以及勾股定理,來(lái)判斷出三角形BDE是否為直角三角形,如果是直角三角形,那么找出三角形BDE中的直角,然后看夾直角的兩組對(duì)應(yīng)邊是否成比例即可得出兩三角形是否相似.
解答:解:(1)由已知得:
解得c=3,b=2
∴拋物線的線的解析式為y=-x2+2x+3.

(2)由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為(1,4)
所以對(duì)稱軸為x=1,A,E關(guān)于x=1對(duì)稱,
所以E(3,0)
設(shè)對(duì)稱軸與x軸的交點(diǎn)為F
所以四邊形ABDE的面積=S△ABO+S梯形BOFD+S△DFE=AO•BO+(BO+DF)•OF+EF•DF
=×1×3+(3+4)×1+×2×4
=9

(3)相似.如圖,連接AB、BD、DE,過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,過(guò)點(diǎn)B作BG⊥DF于點(diǎn)G.
BD=
BE=
DE=
所以DE2=20,即:BD2+BE2=DE2,
所以△BDE是直角三角形,所以∠AOB=∠DBE=90°,且
所以△AOB∽△DEB.
點(diǎn)評(píng):本題主要考查了用待定系數(shù)法求二次函數(shù)的解析式的方法,相似三角形的判定以及二次函數(shù)的綜合應(yīng)用等知識(shí)點(diǎn).本題中確定二次函數(shù)的解析式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年四川省雅安中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•宜賓)已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點(diǎn)A(-1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為E.求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省廣州市蘿崗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•宜賓)已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點(diǎn)A(-1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為E.求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•宜賓)已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點(diǎn)A(-1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個(gè)交點(diǎn)為E.求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省南京市六合區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•宜賓)已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案