已知:AB∥CD,AD∥BC,∠B=∠D=,AB=2,AD≠DC,矩形ABCD的面積為a,沿矩形的對稱軸折疊一次得到一個新矩形.求這個新矩形的對角線的長.

答案:
解析:

  由于矩形有2條對稱軸,因此要分類討論:

  (1)以A,B為對稱點,由勾股定理,對角線長為

  (2)以A,D為對稱點,對角線長為


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

18、如圖,已知直線AB∥CD,∠DCF=110°,且AE=AF,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AB、CD與直線EF分別交于E、F點,已知:AB∥CD,∠EFD的平分線FG交AB于點G,∠1=60°15′,則∠2=
59.5
59.5
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:AB∥CD,
求證:∠ABE+∠BED+∠EDC=360°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,∠BAP+∠APD=180°,∠1=∠2.求證:∠E=∠F 
證明:∵∠BAP+∠APD=180°,(已知)
∴AB∥CD.(
同旁內(nèi)角互補,兩直線平行
同旁內(nèi)角互補,兩直線平行

∴∠BAP=∠APC.(
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

∵∠1=∠2,(已知)
∴∠BAP-∠1=∠APC-∠2.(等式的性質(zhì))
即∠EAP=∠EPA
∴AE∥PF.(
內(nèi)錯角相等,兩直線平行
內(nèi)錯角相等,兩直線平行

∴∠E=∠F.(
兩直線平行,內(nèi)錯角相等
兩直線平行,內(nèi)錯角相等

查看答案和解析>>

同步練習冊答案