如圖,拋物線(xiàn)y=-x2-2x+3 的圖象與x軸交于A(yíng)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線(xiàn)段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線(xiàn),與直線(xiàn)AC交于點(diǎn)E,與拋物線(xiàn)交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線(xiàn)上一點(diǎn)F作y軸的平行線(xiàn),與直線(xiàn)AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=2
2
DQ,求點(diǎn)F的坐標(biāo).
考點(diǎn):二次函數(shù)綜合題
專(zhuān)題:代數(shù)幾何綜合題,壓軸題
分析:(1)通過(guò)解析式即可得出C點(diǎn)坐標(biāo),令y=0,解方程得出方程的解,即可求得A、B的坐標(biāo).
(2)設(shè)M點(diǎn)橫坐標(biāo)為m,則PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,矩形PMNQ的周長(zhǎng)d=-2m2-8m+2,將-2m2-8m+2配方,根據(jù)二次函數(shù)的性質(zhì),即可得出m的值,然后求得直線(xiàn)AC的解析式,把x=m代入可以求得三角形的邊長(zhǎng),從而求得三角形的面積.
(3)設(shè)F(n,-n2-2n+3),根據(jù)已知若FG=2
2
DQ,即可求得.
解答:解:(1)由拋物線(xiàn)y=-x2-2x+3可知,C(0,3),
令y=0,則0=-x2-2x+3,解得x=-3或x=1,
∴A(-3,0),B(1,0).

(2)由拋物線(xiàn)y=-x2-2x+3可知,對(duì)稱(chēng)軸為x=-1,
設(shè)M點(diǎn)的橫坐標(biāo)為m,則PM=-m2-2m+3,MN=(-m-1)×2=-2m-2,
∴矩形PMNQ的周長(zhǎng)=2(PM+MN)=(-m2-2m+3-2m-2)×2=-2m2-8m+2=-2(m+2)2+10,
∴當(dāng)m=-2時(shí)矩形的周長(zhǎng)最大.
∵A(-3,0),C(0,3),設(shè)直線(xiàn)AC解析式為y=kx+b,
解得k=1,b=3,
∴解析式y(tǒng)=x+3,當(dāng)x=-2時(shí),則E(-2,1),
∴EM=1,AM=1,
∴S=
1
2
•AM•EM=
1
2


(3)∵M(jìn)點(diǎn)的橫坐標(biāo)為-2,拋物線(xiàn)的對(duì)稱(chēng)軸為x=-1,
∴N應(yīng)與原點(diǎn)重合,Q點(diǎn)與C點(diǎn)重合,
∴DQ=DC,
把x=-1代入y=-x2-2x+3,解得y=4,
∴D(-1,4)
∴DQ=DC=
2
,
∵FG=2
2
DQ,
∴FG=4,
設(shè)F(n,-n2-2n+3),
則G(n,n+3),
∵點(diǎn)G在點(diǎn)F的上方,
∴(n+3)-(-n2-2n+3)=4,
解得:n=-4或n=1.
∴F(-4,-5)或(1,0).
點(diǎn)評(píng):本題考查了二次函數(shù)與坐標(biāo)軸的交點(diǎn)的求法,矩形的性質(zhì),一元二次方程的解法,二次函數(shù)最值的求法,綜合性較強(qiáng),難度適中.運(yùn)用數(shù)形結(jié)合、方程思想是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在教學(xué)實(shí)踐課中,小明為了測(cè)量學(xué)校旗桿CD的高度,在地面A處放置高度為1.5米的測(cè)角儀AB,測(cè)得旗桿頂端D的仰角為32°,AC=22米,求旗桿CD的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:(-2)3+(
1
3
-1-|-5|+(
3
-2)0
(2)化簡(jiǎn):(
x+1
x2-x
-
x
x2-2x+1
)÷
1
x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分為A(100~90)、B(89~80分)、C(79~60分)、D(59~0分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)這次隨機(jī)抽取的學(xué)生共有多少人?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD中,AB=20,BC=10,點(diǎn)P為AB邊上一動(dòng)點(diǎn),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)P點(diǎn)從A點(diǎn)出發(fā)沿AB邊以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),移動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),DP⊥AC?
②設(shè)S△APQ+S△DCQ=y,寫(xiě)出y與t之間的函數(shù)解析式,并探究P點(diǎn)運(yùn)動(dòng)到第幾秒到第幾秒之間時(shí),y取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x、y是二元一次方程組
x-2y=3
2x+4y=5
的解,則代數(shù)式x2-4y2的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將四個(gè)圓兩兩相切拼接在一起,它們的半徑均為1cm,則中間陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

分式方程
x
x+2
=
x-1
x
的解為x=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

不等式組
2x<8
4x-1>x+2
的解集是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案