如圖,已知為△的角平分線,,如果,那么=        

 

【答案】

2:3

【解析】∵AD為△ABC的角平分線,∴∠BAD=∠EAD,∵DE∥AB,∴△CED∽△CAB,∠BAD=∠EDA.∴∠EDA=∠EAD,∴EA=ED,∵,∴ED:EC=2:3,∴=ED:EC=2:3.

A
 
 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

身邊沒有量角器時,怎樣得到一些特定度數(shù)的角呢?動手操作有時可以解“燃眉之急”.如圖,已精英家教網(wǎng)知矩形紙片ABCD(矩形紙片要足夠長),我們按如下步驟操作可以得到一個特定的角:
(1)以點(diǎn)A所在直線為折痕,折疊紙片,使點(diǎn)B落在AD上,折痕與BC交于E;
(2)將紙片展平后,再一次折疊紙片,以E所在直線為折痕,使點(diǎn)A落在BC上,折痕EF交AD于F.
則∠AFE=( 。
A、60°B、67.5°C、72°D、75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,已知長方形ABCD,我們按如下步驟操作可以得到一個特定角:(1)以點(diǎn)A所在直線為折痕,折疊紙片,使點(diǎn)B落在AD上,折痕與BC交于E;(2)將紙片展平后,再一次折疊紙片,以E所在直線為折痕,使點(diǎn)A落在BC上,折痕EF交AD于F,則∠AEF的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù)).
【小題1】若修建的斜坡BE的坡角(即∠BAC)不大于45°,則平臺DE的長最多為 ▲ 米;
【小題2】一座建筑物GH距離坡腳A點(diǎn)27米遠(yuǎn)(即AG=27米),小明在D點(diǎn)測得建筑物頂部H的仰角(即∠HDM)為30°.點(diǎn)B、C、A、G、H在同一個平面上,點(diǎn)C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計(jì)劃在斜坡中點(diǎn)D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù)).

1.若修建的斜坡BE的坡角(即∠BAC)不大于45°,則平臺DE的長最多為  ▲  米;

2.一座建筑物GH距離坡腳A點(diǎn)27米遠(yuǎn)(即AG=27米),小明在D點(diǎn)測得建筑物頂部H的仰角(即∠HDM)為30°.點(diǎn)B、C、A、G、H在同一個平面上,點(diǎn)C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》好題集(05):25.3 軸對稱變換(解析版) 題型:選擇題

身邊沒有量角器時,怎樣得到一些特定度數(shù)的角呢?動手操作有時可以解“燃眉之急”.如圖,已知矩形紙片ABCD(矩形紙片要足夠長),我們按如下步驟操作可以得到一個特定的角:
(1)以點(diǎn)A所在直線為折痕,折疊紙片,使點(diǎn)B落在AD上,折痕與BC交于E;
(2)將紙片展平后,再一次折疊紙片,以E所在直線為折痕,使點(diǎn)A落在BC上,折痕EF交AD于F.
則∠AFE=( )

A.60°
B.67.5°
C.72°
D.75°

查看答案和解析>>

同步練習(xí)冊答案