【題目】任意兩點(diǎn)關(guān)于它們所連線段的中點(diǎn)成中心對(duì)稱,在平面直角坐標(biāo)系中,任意兩點(diǎn)P(x1,y1),Q (x2,y2)的對(duì)稱中心的坐標(biāo)為,如圖.
(1)在平面直角坐標(biāo)系中,若點(diǎn)P1(0,-1),P2(2,3)的對(duì)稱中心是點(diǎn)A,則點(diǎn)A的坐標(biāo)為________;
(2)另取兩點(diǎn),.有一電子青蛙從點(diǎn)P1處開始依次作關(guān)于點(diǎn)A,B,C的循環(huán)對(duì)稱跳動(dòng),即第一次跳到點(diǎn)P1關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P2處,接著跳到點(diǎn)P2關(guān)于點(diǎn)B的對(duì)稱點(diǎn)P3處,第三次再跳到點(diǎn)P3關(guān)于點(diǎn)C的對(duì)稱點(diǎn)P4處,第四次再跳到點(diǎn)P4關(guān)于點(diǎn)A的對(duì)稱點(diǎn)P5處,…,則點(diǎn)的坐標(biāo)為________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(diǎn)和,且與軸相交于負(fù)半軸.
第問:給出四個(gè)結(jié)論:①;②;③;④.寫出其中正確結(jié)論的序號(hào)(答對(duì)得分,少選、錯(cuò)選均不得分)
第 問:給出四個(gè)結(jié)論:①abc<0;②2a+b>0;③a+c=1;④a>1.寫出其中正確結(jié)論的序號(hào).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=1,BC=,點(diǎn)O為Rt△ABC內(nèi)一點(diǎn),連接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求畫圖(保留畫圖痕跡):以點(diǎn)B為旋轉(zhuǎn)中心,將△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,得到△A′O′B(得到A、O的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′、O′),則∠A′BC=______,OA+OB+OC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在D處測(cè)得山頂C的仰角為37°,向前走100米來到山腳A處,測(cè)得山坡AC的坡度為i=1:0.5,求山的高度(不計(jì)測(cè)角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:
定義:如果二次函數(shù)與滿足,,,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)可知,,,,根據(jù),,,求出,,,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面問題:
(1)直接寫出函數(shù)的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與互為“旋轉(zhuǎn)函數(shù)”,求的值;
(3)已知函數(shù)的圖象與軸交于點(diǎn)A、B兩點(diǎn)(A在B的左邊),與軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分別是A1,B1,C1,試證明經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)互為“旋轉(zhuǎn)函數(shù)”。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某古城幾個(gè)地名的平面示意圖,已知民俗街和博物館的坐標(biāo)分別為點(diǎn),,請(qǐng)仔細(xì)觀察示意圖完成以下問題.
(1)請(qǐng)根據(jù)題意在圖上建立平面直角坐標(biāo)系.
(2)在(1)的條件下,寫出圖上B,D兩地點(diǎn)的坐標(biāo).
(3)某周末甲,乙,丙,丁等4位同學(xué)分別到古城樓,民俗街,文化廣場(chǎng),博物館四個(gè)地點(diǎn)游玩,且每人只去一個(gè)地點(diǎn),老師打電話問了趙,錢,孫,李等四位同學(xué),趙說:“甲在民俗街,乙在文化廣場(chǎng)”;錢說:“丙在博物館,乙在民俗街”;孫說:“丁在民俗街,丙在文化廣場(chǎng)”;李說:“丁在古城樓,乙在文化廣場(chǎng)”.若知道趙,錢,孫,李每人都只說對(duì)了一半,則丙同學(xué)游玩的地點(diǎn)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)如圖1,求證:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的長(zhǎng)度;
(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫出∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對(duì)稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com