18、如圖,已知:AD是△ABC的中線,AB>AC,求證:∠CAD>∠BAD.
分析:把△ABD繞點D順時針旋轉(zhuǎn)180°到△ECD的位置,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠E=∠BAD,CE=AB,而AB>AC,得CE>AC,根據(jù)三角形的邊角關(guān)系得到∠CAD>∠E,從而得到結(jié)論.
解答:解:把△ABD繞點D順時針旋轉(zhuǎn)180°到△ECD的位置,如圖,
∴∠E=∠BAD,CE=AB
而AB>AC,
∴CE>AC,
∴∠CAD>∠E,
所以∠CAD>∠BAD.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.也考查了三角形的邊角關(guān)系:大邊對大角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,已知線段AD是△ABC的中線,且AB=6,AD=4,AC邊長為奇數(shù).求邊AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知:AD是BC上的中線,E點在AD延長線上,且DF=DE.
求證:BE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:AD是Rt△ABC斜邊BC上的高線,DE是Rt△ADC斜邊AC上的高線,如果DC:AD=1:2,S△CDE=a,那么S△ABC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:AD是⊙O的直徑,AB、AC是弦,且AB=AC.
(1)求證:直徑AD平分∠BAC;
(2)若BC經(jīng)過半徑OA的中點E,F(xiàn)是
CD
的中點,G是
FB
中點,⊙O的半徑為1,求GF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:AD是BC上的中線,BE⊥AD于點E,且DF=DE.求證:CF⊥AD.

查看答案和解析>>

同步練習(xí)冊答案