【題目】如圖,邊長為2的正方形紙片ABCD中,點M為邊CD上一點(不與C,D重合),將ADM沿AM折疊得到AME,延長ME交邊BC于點N,連結(jié)AN

1)猜想∠MAN的大小是否變化,并說明理由;

2)如圖1,當N點恰為BC中點時,求DM的長度;

3)如圖2,連結(jié)BD,分別交ANAM于點Q,H.若BQ,求線段QH的長度.

【答案】1)∠MAN的大小沒有變化,理由見解析;(2;(3.

【解析】

1)由折疊知AD=AEDM=EM、∠D=AEM=90°、∠DAM=EAM=DAE,再證RtBANRtEAN得∠BAN=EAN=BAE,根據(jù)∠MAN=EAM+EAN=(∠DAE+BAE)可得答案;

2)由題意知EN=BN=CN=1,設(shè)DM=EM=x,則MC=2-x、MN=1+x,在RtMNC中,由MC2+CN2=MN2列出關(guān)于x的方程求解可得;

3)將ABQ繞點A逆時針旋轉(zhuǎn)90°ADG,連接GH,由旋轉(zhuǎn)知DG=BQ=,AG=AQ,∠ADG=ABQ=ADB=45°,∠BAQ=DAG,證GAH≌△QAHGH=QH,設(shè)GH=QH=a,得BD=AB=2BQ=,DQ=DH=-a,在RtDGH中,由DG2+DH2=GH2可得關(guān)于a的方程,解之可得答案.

1)∠MAN的大小沒有變化,

∵將ADM沿AM折疊得到AME,

∴△ADM≌△AEM,

ADAE2、DMEM、∠D=∠AEM90°、∠DAM=∠EAMDAE

又∵ADAB2、∠D=∠B90°,

AEAB、∠B=∠AEM=∠AEN90°,

RtBANRtEAN中,

,

RtBANRtEANHL),

∴∠BAN=∠EANBAE,

則∠MAN=∠EAM+EANDAE+BAE(∠DAE+BAE)=BAD45°

∴∠MAN的大小沒有變化;

2)∵N點恰為BC中點,

ENBNCN1,

設(shè)DMEMx,則MC2x,

MNME+EN1+x

RtMNC中,由MC2+CN2MN2可得(2x2+12=(1+x2,

解得:x,即DM;

3)如圖,將ABQ繞點A逆時針旋轉(zhuǎn)90°ADG,連接GH,

ABQ≌△ADG,

DGBQAGAQ、∠ADG=∠ABQ=∠ADB45°、∠BAQ=∠DAG,

∵∠MANBAD45°

∴∠BAQ+DAM=∠DAG+DAM=∠GAH45°,

則∠GAH=∠QAH

GAHQAH中,

,

∴△GAH≌△QAHSAS),

GHQH,

設(shè)GHQHa,

BDAB2,BQ

DQBDBQ,

DHa

∵∠ADG=∠ADH45°,

∴∠GDH90°

RtDGH中,由DG2+DH2GH2可得(2+a2a2

解得:a,即QH

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)寫出數(shù)軸上點B表示的數(shù) _______,點P表示的數(shù)________(用含t的代數(shù)式表示);

2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?(5分)

3)若MAP的中點,NPB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長;(5分)

4)若點D是數(shù)軸上一點,點D表示的數(shù)是x,請你探索式子|x+6|+|x-8|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點.

(1)寫出點A、點B的坐標;

(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設(shè)直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;

(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知代數(shù)式是關(guān)于的二次多項式.

1)若關(guān)于的方程的解是,求的值;

2)若當時,代數(shù)式的值為-39,求當時,代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,AB=AC=5cm,BC=8cm,動點N從點C出發(fā),沿線段CB2cm/s的速度向點B運動,并在達到點B后,立即以同樣的速度返回向點C運動;同時動點M從點B出發(fā),沿折線B﹣A﹣C1cm/s的速度向點C運動,當點N回到點C時,兩個動點同時停止運動.⊙M是以M為圓心,1cm為半徑的圓,設(shè)運動時間為t(s) (t>0)

(1)tanB=   

(2)當點M在線段AB上運動,且⊙MBC相切時,求t的值;

(3)當t為何值時,⊙M與折線B﹣A﹣C的兩個交點在等腰三角形ABC對稱軸的同側(cè),且經(jīng)過交點和點N的直線與⊙M相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解本校八年級學(xué)生生物考試測試情況,隨機抽取了本校八年級部分學(xué)生的生物測試成績?yōu)闃颖荆?/span>A(優(yōu)秀)、B(良好)、C(合格)、D(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖表.請你結(jié)合圖表中所給信息解答下列問題:

等級

人數(shù)

A(優(yōu)秀)

40

B(良好)

80

C(合格)

70

D(不合格)

1)請將上面表格中缺少的數(shù)據(jù)補充完整;

2)扇形統(tǒng)計圖中“A”部分所對應(yīng)的圓心角的度數(shù)是   ;

3)該校八年級共有1200名學(xué)生參加了身體素質(zhì)測試,試估計測試成績合格以上(含合格)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解陽光體育活動的開展情況,從全校2000名學(xué)生中,隨機抽取部分學(xué)生進行問卷調(diào)查(每名學(xué)生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

1)被調(diào)查的學(xué)生共有   人,并補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,m   ,n   ,表示區(qū)域C的圓心角為   度;

3)全校學(xué)生中喜歡籃球的人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù)表示點和點之間的距離,且,滿足.

1)求,兩點之間的距離;

2)若在數(shù)軸上存在一點,且,直接寫出點表示的數(shù);

3)若在原點處放一擋板,一小球甲從點處以1個單位/秒的速度向左運動;同時另一小球乙從點處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),
①分別表示甲、乙兩小球到原點的距離(用t表示);
②求甲、乙兩小球到原點的距離相等時經(jīng)歷的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,兩點分別是軸和軸正半軸上兩個動點,以三點為頂點的矩形的面積為24,反比例函數(shù)為常數(shù)且)的圖象與矩形的兩邊分別交于點.

1)若且點的橫坐標為3.

①點的坐標為 ,點的坐標為 (不需寫過程,直接寫出結(jié)果);

②在軸上是否存在點,使的周長最?若存在,請求出的周長最小值;若不存在,請說明理由.

2)連接,在點的運動過程中,的面積會發(fā)生變化嗎?若變化,請說明理由,若不變,請用含的代數(shù)式表示出的面積.

查看答案和解析>>

同步練習(xí)冊答案