【題目】如圖,矩形ABCD中,AD=6,DC=8,矩形EFGH的三個(gè)頂點(diǎn)E、G、H分別在矩形ABCD的邊ABCD的邊ABCD、DA上,AH=2,連接CF.當(dāng)CGF是直角三角形時(shí),線段AE的長為______

【答案】26

【解析】

由題意得,分∠FGC和∠FCG和∠GFC為直角討論,①當(dāng)∠GFC90時(shí),E、F、C三點(diǎn)在同一直線上,所以△AEH∽△BCE,根據(jù)相似三角形的對應(yīng)線段成比例可求出解;

②當(dāng)∠GCF=90,此時(shí)F點(diǎn)正好落在BC,AEH≌△CGF,AEH∽△GDH,可求得AE的值;

③當(dāng)∠CGF=90時(shí),C,G,H共線,所以不可能.

解:①由題意得,∠FGC和∠FCG都不能為直角,當(dāng)∠GFC90時(shí),E、F、C三點(diǎn)在同一直線上,所以△AEH∽△BCE, ,

設(shè)AE=x,有,可得x=2或者x=6,

②當(dāng)∠GCF=90,此時(shí)F點(diǎn)正好落在BC上,則△AEH≌△CGF,AEH∽△GDH,

,解得x=4+2x=4-2

③當(dāng)∠CGF=90時(shí),C,G,H共線,所以不可能;

故答案:26.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座拋物線型拱橋,已知橋下在正常水位AB時(shí),水面寬8m,水位上升3m, 就達(dá)到警戒水位CD,這時(shí)水面寬4m若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,求水過警戒水位后幾小時(shí)淹到橋拱頂.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)八師石河子市某中學(xué)初三(1)班的學(xué)生,在一次數(shù)學(xué)活動(dòng)課中,來到市游憩廣場,測量坐落在廣場中心的王震將軍的銅像高度,已知銅像底座的高為3.5m.某小組的實(shí)習(xí)報(bào)告如下請你計(jì)算出銅像的高(結(jié)果精確到0.1m)

實(shí)習(xí)報(bào)告2003925

題目1

測量底部可以到達(dá)的銅像高

數(shù)

據(jù)

測量項(xiàng)目

第一次

第二次

平均值

BD的長

12.3m

11.7m

測傾器CD的高

1.32m

1.28m

傾斜角

α=30°56'

α=31°4'

計(jì)

結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8分一個(gè)不透明的口袋中裝有2個(gè)紅球記為紅球1、紅球2、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.

1從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;

2先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請用列舉法畫樹狀圖或列表求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援困山區(qū),某學(xué)校愛心活動(dòng)小組準(zhǔn)備用籌集的資金購買AB兩種型號的學(xué)習(xí)用品.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購買B型學(xué)習(xí)用品與用120元購買A型學(xué)習(xí)用品的件數(shù)相同.

1)求A,B兩種學(xué)習(xí)用品的單價(jià)各是多少元;

2)若購買A、B兩種學(xué)習(xí)用品共1000件,且總費(fèi)用不超過28000元,則最多購買B型學(xué)習(xí)用品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn)、,將矩形的一個(gè)角沿直線折疊,使得點(diǎn)落在對角線上的點(diǎn)處,折痕與軸交于點(diǎn).

1)線段的長度為__________;

2)求直線所對應(yīng)的函數(shù)解析式;

3)若點(diǎn)在線段上,在線段上是否存在點(diǎn),使四邊形是平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,的角平分線,于點(diǎn)

1)如圖,連接,求證:是等邊三角形;

2)點(diǎn)是線段上的一點(diǎn)(不與點(diǎn)重合),以為一邊,在的下方作,延長線于點(diǎn),請你在圖中畫出完整圖形,并直接寫出之間的數(shù)量關(guān)系;

3)如圖,點(diǎn)是線段上的一點(diǎn),以為一邊,在的下方作,延長線于點(diǎn),試探究數(shù)量之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李是某服裝廠的一名工人,負(fù)責(zé)加工A,B兩種型號服裝,他每月的工作時(shí)間為22天,月收入由底薪和計(jì)件工資兩部分組成,其中底薪900元,加工A型服裝1件可得20元,加工B型服裝1件可得12元.已知小李每天可加工A型服裝4件或B型服裝8件,設(shè)他每月加工A型服裝的時(shí)間為x天,月收入為y元.

(1) 求y與x的函數(shù)關(guān)系式;

(2) 根據(jù)服裝廠要求,小李每月加工A型服裝數(shù)量應(yīng)不少于B型服裝數(shù)量的,那么他的月收入最高能達(dá)到多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識鏈接)連結(jié)三角形兩邊中點(diǎn)的線段,叫做三角形的中位線.

(動(dòng)手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時(shí),是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.

(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程)

查看答案和解析>>

同步練習(xí)冊答案