【題目】在平面直角坐標系xOy中,已知點A0,3m),P0,2m),Q0,m(m≠0).將點A繞點P順時針旋轉(zhuǎn)90°,得到點M,將點O繞點Q順時針旋轉(zhuǎn)90°,得到點N,連接MN,稱線段MN為線段AO的伴隨線段.

1)如圖1,若m=1,則點M,N的坐標分別為 ,

2)對于任意的m,求點M,N的坐標(用含m的式子表示);

3)已知點B,t),C,t),以線段BC為直徑,在直線BC的上方作半圓,若半圓與線段BC圍成的區(qū)域內(nèi)(包括邊界)至少存在一條線段AO的伴隨線段MN,直接寫出t的取值范圍.

【答案】1(1,2)(1,1) .(2(m,2 m),(m, m).(3

【解析】

1)把m=1分別代入點A,P,Q的坐標中,依據(jù)題意進行操作即可得到M,N的坐標;

2)根據(jù)點A,P,Q的坐標求出APOP,OQ的長,再根據(jù)旋轉(zhuǎn)的性質(zhì)可求出M,N的坐標;

3)分m為正數(shù)和負數(shù)兩種情況討論求解即可.

1)∵A0,3m),P0,2m),Q0,m

∴當m=1時,A0,3),P0,2),Q0,1

∵點A繞點P順時針旋轉(zhuǎn)90°,得到點M,

M1,2

∵點O繞點Q順時針旋轉(zhuǎn)90°,得到點N,

N(-1,1),如圖所示:

2)∵A0,3m),P02m),Q0m

AP=m,OP=2m,OQ=m

∵點A繞點P順時針旋轉(zhuǎn)90°,得到點M,

Mm,2m

∵點O繞點Q順時針旋轉(zhuǎn)90°,得到點N,

N(-m,m);

3)∵點Bt),Ct),

BC=2

以線段BC為直徑,在直線BC的上方作半圓,如圖所示,

①當m為正數(shù)時,半圓中線段MN的最大值是NBC上,M在弧上,

此時△PQM是等腰直角三角形,

,即

解得m=1m=-1(舍去),

∴QO=1,

t=1;

②當m為負數(shù)時,半圓中線段MN的最小值是MBC上,N在弧上,此時△PQM是等腰直角三角形,如圖,

,即

解得m=-1m=1(舍去)

∴PO=2,

t=-2;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】參照學習函數(shù)的過程與方法,探究函數(shù)y=的圖象與性質(zhì).

因為y=,即y=﹣+1,所以我們對比函數(shù)y=﹣來探究.

列表:

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y=﹣

1

2

4

﹣4

﹣1

1

y=

2

3

5

﹣3

﹣1

0

描點:在平面直角坐標系中,以自變量x的取值為橫坐標,以y=相應的函數(shù)值為縱坐標,描出相應的點,如圖所示:

(1)請把y軸左邊各點和右邊各點,分別用一條光滑曲線順次連接起來;

(2)觀察圖象并分析表格,回答下列問題:

①當x<0時,yx的增大而   ;(填增大減小”)

y=的圖象是由y=﹣的圖象向   平移   個單位而得到;

③圖象關于點   中心對稱.(填點的坐標)

(3)設A(x1,y1),B(x2,y2)是函數(shù)y=的圖象上的兩點,且x1+x2=0,試求y1+y2+3的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】彈簧是一種利用彈性來工作的機械零件,用彈性材料制成的零件在外力作用下發(fā)生形變,除去外力后又恢復原狀.某班同學在探究彈簧的長度與所受外力的變化關系時,通過實驗記錄得到的數(shù)據(jù)如下表:

砝碼的質(zhì)量x(克)

0

50

100

150

200

250

300

400

500

指針的位置ycm

2

3

4

5

6

7

7.5

7.5

7.5

小騰根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究,下面是小騰的探究過程,請補充完整.

1)根據(jù)上述表格在平面直角坐標系中補全該函數(shù)的圖象;

2)根據(jù)畫出的函數(shù)圖象,寫出:

①當x0時,y   ,它的實際意義是   ;

②當指針的位置y不變時,砝碼的質(zhì)量x的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC

1)試判斷BC與⊙O的位置關系,并說明理由;

2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組在一次課外學習與探究中遇到一些新的數(shù)學符號,他們將其中某些材料摘錄如下:

對于三個實,數(shù),,用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù),例如=4,,.請結(jié)合上述材料,解決下列問題:

1)①_____,

_____

2)若,則的取值范圍為_____;

3)若,求的值;

4)如果,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的二次函數(shù)的圖象開口向下,的部分對應值如下表所示:

下列判斷,①;②;③方程有兩個不相等的實數(shù)根;

④若,則,正確的是________________(填寫正確答案的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線軸、軸分別交于兩點,將沿軸正方向平移后,點、點的對應點分別為點、點,且四邊形為菱形,連接,拋物線經(jīng)過三點,點上方拋物線上一動點,作,垂足為

求此拋物線的函數(shù)關系式;

求線段長度的最大值;

如圖②,延長軸于點,連接,若為等腰三角形,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于AB兩點,與y軸交于C點,直線BD交拋物線于點D,并且,

1)求拋物線的解析式;

2)已知點M為拋物線上一動點,且在第三象限,順次連接點BM、C,求面積的最大值;

3)在(2)中面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx26mx+9m+1m0).

1)求拋物線的頂點坐標;

2)若拋物線與x軸的兩個交點分別為AB點(點A在點B的左側(cè)),且AB4,求m的值.

3)已知四個點C22)、D2,0)、E5,﹣2)、F5,6),若拋物線與線段CD和線段EF都沒有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案