【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與邊BC交于點(diǎn)D,與邊AC交于點(diǎn)E,連接AD,且AD平分∠BAC.
(1)試判斷BC與⊙O的位置關(guān)系,并說明理由;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,,平分交于點(diǎn),平分交于點(diǎn),、相交于點(diǎn),過點(diǎn)作,過點(diǎn)作交于點(diǎn).下列結(jié)論:①;②;③平分;④.其中正確的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個五角星.
(1)計算:∠A+∠B+∠C+∠D+∠E的度數(shù).
(2)當(dāng)BE向上移動,過點(diǎn)A時,如圖2,五個角的和(即∠CAD+∠B+∠C+∠D+∠E)有無變化?說明你的理由.
(3)如圖3,把圖2中的點(diǎn)C向上移到BD上時,五個角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有無變化?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)武術(shù)、舞蹈、剪紙三項活動課程,為了了解學(xué)生對這三項活動課程的興趣情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人從中只能選一頂),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計圖補(bǔ)充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)在扇形統(tǒng)計圖中,計算女生喜歡剪紙活動課程人數(shù)對應(yīng)的圓心角度數(shù);
(4)已知該校有1200名學(xué)生,請結(jié)合數(shù)據(jù)簡要分析該校學(xué)生對三項活動課程的興趣情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實際,需購進(jìn)電腦和電子白板共30臺,總費(fèi)用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動,同時點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)后就停止移動,設(shè)兩點(diǎn)移動的時間為t秒,回答下列問題:
(1)如圖1,當(dāng)t為幾秒時,△PBQ的面積等于5cm2?
(2)如圖2,當(dāng)t=秒時,試判斷△DPQ的形狀,并說明理由;
(3)如圖3,以Q為圓心,PQ為半徑作⊙Q.
①在運(yùn)動過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請說明理由;
②若⊙Q與四邊形DPQC有三個公共點(diǎn),請直接寫出t的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)環(huán)保意識,某社區(qū)計劃開展一次“減碳環(huán)保,減少用車時間”的宣傳活動,對部分家庭五月份的平均每天用車時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查了多少個家庭?
(2)將圖①中的條形圖補(bǔ)充完整,直接寫出用車時間的中位數(shù)落在哪個時間段內(nèi);
(3)求用車時間在1~1.5小時的部分對應(yīng)的扇形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有1600個,請你估計該社區(qū)用車時間不超過1.5小時的約有多少個家庭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,四邊形ACFE是平行四邊形,AE=BC.
(1)如圖①,求證:ACFE是菱形;
(2)如圖②,點(diǎn)D是△ABC內(nèi)一點(diǎn),且∠ADB=90°,∠EDC=90°,∠ABD=∠ACE.求證:ACFE是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com