【題目】如圖,直線y=kx+與拋物線y= 交于點(diǎn)A(﹣2,0)與點(diǎn)D,直線y=kx+與y軸交于點(diǎn)C.
(1)求k、b的值及點(diǎn)D的坐標(biāo);
(2)過D點(diǎn)作DE⊥y軸于點(diǎn)E,點(diǎn)P是拋物線上A、D間的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作PM∥CE交線段AD于M點(diǎn),問是否存在P點(diǎn)使得四邊形PMEC為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1) k的值是,b的值是.點(diǎn)D的坐標(biāo)是(8,) (2) (2,﹣3)或(4,﹣)
【解析】
(1)把點(diǎn)A的坐標(biāo)代入直線y=kx+來求k的值;把點(diǎn)A的坐標(biāo)代入拋物線y=來求b的值.
(2)由二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征設(shè)P(m,),則M(m,),由平行四邊形的對(duì)邊平行且相等的性質(zhì)和兩點(diǎn)間的距離公式得到方程,通過解方程求得m的值,易得點(diǎn)P的坐標(biāo).
(1)把A(﹣2,0)代入y=kx+得到:0=﹣2k+,解得k= .
把A(﹣2,0)代入得到:×(﹣2)2﹣2b﹣=0,解得b=﹣.
則該直線方程為y=x+
①拋物線方程為:y=x2﹣x﹣
②聯(lián)立①②解得x=8,y=,即點(diǎn)D的坐標(biāo)是(8,);
綜上所述,k的值是,b的值是.點(diǎn)D的坐標(biāo)是(8,);
(2)設(shè)P(m, m2﹣m﹣),則M(m, m+),∵PM∥CE且四邊形PMEC為平行四邊形,∴PM=CE,∴yM=﹣yP=yE﹣yC,即﹣m2+m+4=﹣,整理,得(m﹣2)(m+4)=0,解得m1=2,m2=﹣4,故點(diǎn)P的坐標(biāo)為(2,﹣3)或(4,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】泰勒斯是古希臘哲學(xué)家,相傳他利用三角形全等的方法求出岸上一點(diǎn)到海中一艘船的距離.如圖,B是觀察點(diǎn),船A在B的正前方,過B作AB的垂線,在垂線上截取任意長(zhǎng)BD,C是BD的中點(diǎn),觀察者從點(diǎn)D沿垂直于BD的DE方向走,直到點(diǎn)E、船A和點(diǎn)C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知半徑為2的⊙O與直線l相切于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上的動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為C,PC與⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC的長(zhǎng)為x(2<x<4)
【1】當(dāng)時(shí),求弦PA、PB的長(zhǎng)度;
【2】當(dāng)x為何值時(shí),PD×CD的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)DE分別在AB、AC上,DE∥BC,BD=CE,
(1)求證:∠B=∠C,AD=AE;
(2)若∠BAC=90°,把△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),連接MN,PM,PN.
①判斷△PMN的形狀,并說明理由;
②把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN的最大面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC的中點(diǎn),E為AB上一點(diǎn),DF⊥DE交AC于點(diǎn)F,延長(zhǎng)ED至點(diǎn)G,使GD=ED,連接CG.
(1)求證:BE=CG;
(2)求證:BE+CF>EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com