【題目】如圖,⊙A,⊙B的半徑分別為1cm,2cm,圓心距AB為5cm.如果⊙A由圖示位置沿直線AB向右平移2cm,則此時(shí)該圓與⊙B的位置關(guān)系是( 。
A.外離
B.相交
C.外切
D.內(nèi)含
【答案】C
【解析】解答:∵圓心距AB是5cm,把⊙A由圖示位置沿直線AB向右平移2cm,
∴新的圓心距AB是5-2=3cm,
又∵⊙A和⊙B的半徑分別是1cm和2cm,則2-1=1,2+1=3,
∴兩圓恰好外切.故選C.
求出把⊙A由圖示位置沿直線AB向右平移2cm后,⊙A和⊙B的圓心距,再求出兩圓半徑的和與差,與該圓心距進(jìn)行比較,確定兩圓的位置關(guān)系.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓與圓的位置關(guān)系(兩圓之間有五種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(1)∠B和∠FAC是什么位置關(guān)系的角?是哪兩條直線被哪一條直線所截形成的?
(2)∠C和∠DAC呢?∠C和∠FAC呢?
(3)∠B的同旁內(nèi)角分別是哪幾個(gè)角?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OB平分∠AOC,OD平分∠COE,∠AOD=110°,∠BOE=100°,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是長(zhǎng)方體的平面展開圖.
(1)將平面展開圖折疊成一個(gè)長(zhǎng)方體,與字母N重合的點(diǎn)有哪幾個(gè)?
(2)若AG=CK=14 cm,F(xiàn)G=2 cm,LK=5 cm,則該長(zhǎng)方體的表面積和體積分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【題目】如圖,兩個(gè)反比例函數(shù)C1:y=和C2:y=在第一象限內(nèi)的圖象如圖,P在C1上作PC、PD垂直于坐標(biāo)軸,垂線與C2交點(diǎn)為A、B,則下列結(jié)論,其中正確的是( )
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1- k2;③PA與PB始終相等;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn)
A. ①② B. ②④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:
與標(biāo)準(zhǔn)質(zhì)量的差值 | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?
(2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的總質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象如右圖所示,則結(jié)論:
①兩函數(shù)圖象的交點(diǎn)的坐標(biāo)為; ②當(dāng)時(shí), ;
③當(dāng)時(shí), ; ④當(dāng)逐漸增大時(shí), 隨著的增大而增大, 隨著的增大而減。
其中正確結(jié)論的序號(hào)是 .
【答案】①③④
【解析】試題分析:反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.運(yùn)用一次函數(shù)和反比例函數(shù)的性質(zhì)來(lái)解決的一道常見的數(shù)形結(jié)合的函數(shù)試題.一次函數(shù)和反比例函數(shù)的交點(diǎn)坐標(biāo)就是一次函數(shù)與反比例函數(shù)組成的方程組的解.根據(jù)k>0確定一次函數(shù)和反比例函數(shù)在第一象限的圖象特征來(lái)確定其增減性;根據(jù)x=1時(shí)求出點(diǎn)B點(diǎn)C的坐標(biāo)從而求出BC的值;當(dāng)x=2時(shí)兩個(gè)函數(shù)的函數(shù)值相等時(shí)根據(jù)圖象求得x>2時(shí)y1>y2.
試題解析:①由一次函數(shù)與反比例函數(shù)的解析式,
解得, ,
∴A(2,2),故①正確;
②由圖象得x>2時(shí),y1>y2;故②錯(cuò)誤;
③當(dāng)x=1時(shí),B(1,3),C(1,1),∴BC=3,故③正確;
④一次函數(shù)是增函數(shù),y隨x的增大而增大,反比例函數(shù)k>0,y隨x的增大而減小.故④正確.
∴①③④正確.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.
【題型】填空題
【結(jié)束】
15
【題目】如圖, △P1OA1與△P2A1A2是等腰直角三角形,點(diǎn)、在函數(shù)的圖象上,斜邊、都在軸上,則點(diǎn)的坐標(biāo)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在足球比賽中,甲、乙兩名隊(duì)員互相配合向?qū)Ψ角蜷TMN進(jìn)攻,當(dāng)甲帶球沖到A點(diǎn)時(shí),乙已跟隨沖到B點(diǎn),如圖24-1-4-12.此時(shí),甲自己直接射門好,還是迅速將球傳給乙,讓乙射門好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=8 cm,CB=6 cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長(zhǎng);
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;
(3)若C在線段AB的延長(zhǎng)線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,寫出你的結(jié)論,并說(shuō)明理由;
(4)你能用一句簡(jiǎn)潔的話,描述你發(fā)現(xiàn)的結(jié)論嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com