【題目】己知:如圖,在菱形ABCD中,點(diǎn)E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點(diǎn)G.

(1)求證:BE=DF;

(2),求證:四邊形BEFG是平行四邊形.

【答案】見解析

【解析】1)證得△ABE與△AFD全等后即可證得結(jié)論;

2))利用=得到從而根據(jù)平行線分線段成比例定理證得FGBC,進(jìn)而得到∠DGF=DBC=BDC,最后證得BE=GF,利用一組對邊平行且相等即可判定平行四邊形.

1∵四邊形ABCD是菱形,AB=AD,ABC=ADF

∵∠BAF=DAE,∴∠BAFEAF=DAEEAFBAE=DAF,

∴△BAE≌△DAF,

BE=DF

2∵四邊形ABCD是菱形,

ADBC,∴△ADG∽△EBG,

=

又∵BE=DF,=,

==,

,又∠BDC=GDF

BDC∽△GDF,∴DBC=DGF,

GFBC

∴∠DGF=DBC

BC=CD,

∴∠BDC=DBC=DGF

GF=DF=BE,

GFBC,GF=BE,

∴四邊形BEFG是平行四邊形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

1)已知點(diǎn)A,B,C表示的數(shù)分別為1,-3.觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 A,B兩點(diǎn)之間的距離為

2)數(shù)軸上,點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn)表示的數(shù)是 ;

3)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是 ;若此數(shù)軸上MN兩點(diǎn)之間的距離為2019MN的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則點(diǎn)M表示的數(shù)是 ,點(diǎn)N表示的數(shù)是 。

4)若數(shù)軸上P,Q兩點(diǎn)間的距離為aPQ的左側(cè)),表示數(shù)b的點(diǎn)到P,Q的兩點(diǎn)的距離相等,將數(shù)軸折疊,當(dāng)P點(diǎn)與Q點(diǎn)重合時(shí),點(diǎn)P表示的數(shù)是 ,點(diǎn)Q表示的數(shù)是 (用含a,b的式子表示這兩個(gè)數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC2,∠B=∠C40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)B、C重合),連接AD,作∠ADE40°,DE交線段AC于點(diǎn)E

1)當(dāng)∠BDA110°時(shí),∠EDC   °,∠DEC   °;點(diǎn)DBC的運(yùn)動(dòng)過程中,∠BDA逐漸變   (填“大”或“小”);

2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請說明理由.

3)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù),若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將邊長為1的正方形ABCD壓扁為邊長為1的菱形ABCD.在菱形ABCD中,∠A的大小為α,面積記為S.

(1)請補(bǔ)全下表:

30°

45°

60°

90°

120°

135°

150°

S

1

(2)填空:

由(1)可以發(fā)現(xiàn)正方形在壓扁的過程中,菱形的面積隨著∠A大小的變化而變化,不妨把菱形的面積S記為S(α).例如:當(dāng)α=30°時(shí),;當(dāng)α=135°時(shí),.由上表可以得到( ______°);( ______°),…,由此可以歸納出

(3) 兩塊相同的等腰直角三角板按如圖的方式放置,AD=,AOB=α,試探究圖中兩個(gè)帶陰影的三角形面積是否相等,并說明理由(注:可以利用(2)中的結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtOAB的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,AOB=90°,AO=2BO,當(dāng)點(diǎn)A在反比例函數(shù)(x>0)的圖像上移動(dòng)時(shí),點(diǎn)B的坐標(biāo)滿足的函數(shù)表達(dá)式為( )

A. (x<0) B. (x<0)

C. (x<0) D. (x<0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:

1)求線段CD對應(yīng)的函數(shù)表達(dá)式;

2)求E點(diǎn)的坐標(biāo),并解釋E點(diǎn)的實(shí)際意義;

3)若已知轎車比貨車晚出發(fā)2分鐘,且到達(dá)乙地后在原地等待貨車,則當(dāng)x= 小時(shí),貨車和轎車相距30千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.先做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.

由圖1可以得到(a+b2=4×ab+c2

整理,得a2+2ab+b2=2ab+c2

所以a2+b2=c2

如果把圖1中的四個(gè)全等的直角三角形擺成圖2所示的正方形,請你參照上述方法證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB90°,OA36cmOB12cm,一機(jī)器人在點(diǎn)B處看見一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球.如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1), 點(diǎn)為直線上一點(diǎn),過點(diǎn)作射線, 將一直角的直角項(xiàng)點(diǎn)放在點(diǎn)處,即反向延長射線,得到射線.

(1)當(dāng)的位置如圖(1)所示時(shí),使,若,求的度數(shù).

(2)當(dāng)的位置如圖(2)所示時(shí),使一邊的內(nèi)部,且恰好平分,

:射線的反向延長線是否平分請說明理由注意:不能用問題中的條件

(3)當(dāng)的位置如圖所示時(shí),射線的內(nèi)部,若.試探究之間的數(shù)量關(guān)系,不需要證明,直接寫出結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案