【題目】如圖,李老師設計了一個探究杠桿平衡條件的實驗:在一個自制類似天平的儀器的左邊固定托盤A中放置一個重物,在右邊活動托盤B(可左右移動)中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動托盤B與點O的距離x(cm),觀察活動托盤B中砝碼的質(zhì)量y(g)的變化情況.實驗數(shù)據(jù)記錄如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)猜測y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗證;
(2)當砝碼的質(zhì)量為24g時,活動托盤B與點O的距離是多少?
(3)將活動托盤B往左移動時,應往活動托盤B中添加還是減少砝碼?
【答案】(1)y=;(2)12.5cm;(3)應添加砝碼.
【解析】
試題分析:(1)觀察可得:x,y的乘積為定值300,故y與x之間的函數(shù)關(guān)系為反比例函數(shù),將數(shù)據(jù)代入用待定系數(shù)法可得反比例函數(shù)的關(guān)系式;
(2)把x=24代入解析式求解,可得答案;
(3)利用函數(shù)增減性即可得出,隨著活動托盤B與O點的距離不斷增大,砝碼的示數(shù)應該不斷減小.
試題解析:(1)由圖象猜測y與x之間的函數(shù)關(guān)系為反比例函數(shù),
∴設y=(k≠0),
把x=10,y=30代入得:k=300,
∴y=,
將其余各點代入驗證均適合,
∴y與x的函數(shù)關(guān)系式為:y=;
(2)把y=24代入y=得:x=12.5,
∴當砝碼的質(zhì)量為24g時,活動托盤B與點O的距離是12.5cm.
(3)根據(jù)反比例函數(shù)的增減性,即可得出,隨著活動托盤B與O點的距離不斷減小,砝碼的示數(shù)會不斷增大;
∴應添加砝碼.
科目:初中數(shù)學 來源: 題型:
【題目】為響應市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進A,B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元。設購進A種樹苗x棵,購買兩種樹苗的總費用為w元。
(1)寫出w(元)關(guān)于x(棵)的函數(shù)關(guān)系式;
(2)若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. 相切兩圓的連心線經(jīng)過切點 B. 長度相等的兩條弧是等弧
C. 平分弦的直徑垂直于弦 D. 相等的圓心角所對的弦相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝專賣店老板對第一季度男、女服裝的銷售收入進行統(tǒng)計,并繪制了扇形統(tǒng)計圖(如圖)。由于三月份展開促銷活動,男女服裝的銷售收入分別比二月份增長了40%,64%,已知第一季度男女服裝的銷售總收入為20萬元。
(1)二月份銷售收入為_______萬元。三月份銷售收入為______萬元。
(2)二月份男女服裝的銷售收入分別是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長沙市某家小型“大學生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成今年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=BC,BD=CE,M是AC邊上的中點。
(1)求證:△DEM是等腰直角三角形.
(2)已知AD=4,CE=3,求DE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分9分)某百貨大摟服裝柜在銷售中發(fā)現(xiàn):“七彩”牌童裝平均每天可售出20件,每件盈利40元.為了迎接“元旦”,商場決定采取適當?shù)慕祪r措施,擴大銷售量,增加盈利,減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.
(1)要想平均每天銷售這種童裝盈利1200元,那么每件童裝應降價多少元?
(2)用配方法說明:要想盈利最多,每件童裝應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為4cm的等邊三角形,AD為BC邊上的高,點P沿BC向終點C運動,速度為1cm/s,點Q沿CA、AB向終點B運動,速度為2cm/s,若點P、Q兩點同時出發(fā),設它們的運動時間為x(s).
(l)求x為何值時,PQ⊥AC;x為何值時,PQ⊥AB?
(2)當O<x<2時,AD是否能平分△PQD的面積?若能,說出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應位置關(guān)系的x的取值范圍(不要求寫出過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(-1,0)、B(3,0)、C(0,3)三點。
(1)求拋物線的解析式。
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N若點M的橫坐標為m,請用m的代數(shù)式表示MN的長。
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com