如圖,為直角,點(diǎn)為線段的中點(diǎn),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),連結(jié),作,垂足為,連結(jié),過點(diǎn),交

(1)求證:BF=EF;

(2)當(dāng)取什么值或范圍時(shí),有AC//EF,并說明理由。

 

 

 

【答案】

(1)略 (2)=45°

【解析】(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,得到CE=BC.從而得到∠CBE=∠CEB,再根據(jù)等角的余角相等證明∠FBE=∠FEB,得到BF=EF

(2)假設(shè)點(diǎn)D在運(yùn)動(dòng)過程中能使四邊形ACFE為平行四邊形,則AC∥EF,AC=EF,由(1)知AC=CB= AB,EF=BF= BD,則BC=EF=BF,即BA=BD,∠A=45°

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

29、閱讀探究題:數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識(shí):有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時(shí),張老師出示了問題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個(gè)角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.經(jīng)過思考,小明展示了一種正確的解題思路:在線段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•柳州)如圖,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動(dòng)點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時(shí),S△ABD=
1
2
S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個(gè)單位時(shí),點(diǎn)C′同時(shí)在以A′B′為直徑的圓上(解答過程如果有需要時(shí),請參看閱讀材料).
 
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時(shí),即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可設(shè)y=
x2-2
,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣西自治區(qū)中考真題 題型:解答題

如圖,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動(dòng)點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時(shí),S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個(gè)單位時(shí),點(diǎn)C′同時(shí)在以A′B′為直徑的圓上(解答過程如果有需要時(shí),請參看閱讀材料).
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時(shí),即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3= ,y4=- .所以,原方程的解是y1=1,y2=-1,y3=
y4=-  ,再如 ,可設(shè) ,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=2,AC=BC= 5 .

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);

(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;

(3)若D為拋物線上的一動(dòng)點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時(shí),S△ABD=S△ABC;

(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個(gè)單位時(shí),點(diǎn)C′同時(shí)在以A′B′為直徑的圓上(解答過程如果有需要時(shí),請參看閱讀材料).

附:閱讀材料

一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.

解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.

當(dāng)x1=1時(shí),即y2=1,∴y1=1,y2=-1.

當(dāng)x2=3,即y2=3,∴y3= 3 ,y4=- 3 .

所以,原方程的解是y1=1,y2=-1,y3= 3 ,y4=- 3 .

再如 ,可設(shè) ,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(廣西柳州卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,在△ABC中,AB=2,AC="BC=" 5 .
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動(dòng)點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時(shí),S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個(gè)單位時(shí),點(diǎn)C′同時(shí)在以A′B′為直徑的圓上(解答過程如果有需要時(shí),請參看閱讀材料).

附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時(shí),即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3=" 3" ,y4="-" 3 .
所以,原方程的解是y1=1,y2=-1,y3=" 3" ,y4="-" 3 .
再如 ,可設(shè) ,用同樣的方法也可求解.

查看答案和解析>>

同步練習(xí)冊答案